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Abstract

We investigate online convex optimization in non-stationary environments and choose the
dynamic regret as the performance measure, defined as the difference between cumulative
loss incurred by the online algorithm and that of any feasible comparator sequence. Let T
be the time horizon and PT be the path length that essentially reflects the non-stationarity
of environments, the state-of-the-art dynamic regret is O(

√
T (1 + PT )). Although this

bound is proved to be minimax optimal for convex functions, in this paper, we demon-
strate that it is possible to further enhance the guarantee for some easy problem instances,
particularly when online functions are smooth. Specifically, we introduce novel online al-
gorithms that can exploit smoothness and replace the dependence on T in dynamic regret
with problem-dependent quantities: the variation in gradients of loss functions, the cu-
mulative loss of the comparator sequence, and the minimum of these two terms. These
quantities are at most O(T ) while could be much smaller in benign environments. There-
fore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds
are tighter than existing results for easy problems and meanwhile guarantee the same rate
in the worst case. Notably, our proposed algorithms can achieve favorable dynamic regret
with only one gradient per iteration, sharing the same gradient query complexity as the
static regret minimization methods. To accomplish this, we introduce the framework of
collaborative online ensemble. The proposed framework employs a two-layer online ensem-
ble to handle non-stationarity, and uses optimistic online learning and further introduces
crucial correction terms to enable effective collaboration within the meta-base two layers,
thereby attaining adaptivity. We believe the framework can be useful for broader problems.

Keywords: Online Learning, Online Convex Optimization, Dynamic Regret, Problem-
dependent Bounds, Gradient Variation, Optimistic Mirror Descent, Online Ensemble

1. Introduction

In many real-world applications, data are inherently accumulated over time, and thus it is
of great importance to develop a learning system that updates in an online fashion. Online
Convex Optimization (OCO) is a powerful paradigm for learning in such scenarios, which
can be regarded as an iterative game between a player and an adversary. At iteration t, the
player chooses a decision vector xt from a convex set X ⊆ Rd. Subsequently, the adversary
discloses a convex function ft : X 7→ R, and the player incurs a loss denoted by ft(xt). The
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standard performance measure is the (static) regret (Zinkevich, 2003),

S-RegretT =
T∑
t=1

ft(xt) − min
x∈X

T∑
t=1

ft(x), (1)

which is the difference between cumulative loss incurred by the online algorithm and that
of the best decision in hindsight. The rationale behind such a metric is that the best fixed
decision in hindsight is reasonably good over all the iterations. However, this might be too
optimistic and may not hold in changing environments, where data are evolving and the
optimal decision is drifting over time. To address this limitation, dynamic regret is proposed
to compete with changing comparators u1, . . . ,uT ∈ X ,

D-RegretT (u1, . . . ,uT ) =
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut), (2)

which draws considerable attention recently (Zhang et al., 2018a; Zhao et al., 2020b; Cutkosky,
2020; Zhao et al., 2021a; Baby and Wang, 2021). The measure is also called the universal
dynamic regret (or general dynamic regret), in the sense that it gives a universal guaran-
tee that holds against any comparator sequence. Note that the static regret (1) can be
viewed as its special form by choosing comparators as the fixed best decision in hindsight.
Moreover, a variant appeared frequently in the literature is called the worst-case dynamic
regret (Besbes et al., 2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Yang et al., 2016;
Wei et al., 2016; Zhang et al., 2017; Baby and Wang, 2019; Yuan and Lamperski, 2020;
Zhao et al., 2020a; Zhang et al., 2020a,b; Zhao and Zhang, 2021), defined as

D-RegretT (x∗
1, . . . ,x∗

T ) =
T∑
t=1

ft(xt) −
T∑
t=1

ft(x∗
t ), (3)

which specializes the general form (2) with comparators ut = x∗
t ∈ arg minx∈X ft(x). There-

fore, universal dynamic regret is very general and can include the static regret (1) and the
worst-case dynamic regret (3) as special cases by different instantiations of comparators.
We further remark that the worst-case dynamic regret is often too pessimistic, whereas the
universal one is more adaptive to non-stationary environments. Actually, the changes of on-
line functions usually come from two aspects: one is the sampling randomness and the other
one is the environmental non-stationarity, and clearly the latter one is the main focus of
non-stationary online learning. Optimizing the worst-case dynamic regret can be problem-
atic in some cases. For example, considering the stochastic optimization task where ft’s are
independently randomly sampled from the same distribution, then minimizing the worst-
case dynamic regret is evidently inappropriate and will eventually lead to overfitting (Zhang
et al., 2018a) because the minimizer of online loss function could be dramatically different
from the minimizer of the expected loss function due to the sampling randomness.

There are many studies on the worst-case dynamic regret (Besbes et al., 2015; Jadbabaie
et al., 2015; Mokhtari et al., 2016; Yang et al., 2016; Zhang et al., 2017, 2018b; Baby and
Wang, 2019; Zhang et al., 2020b; Zhao and Zhang, 2021), but only few results are known for
the universal dynamic regret. Zinkevich (2003) shows that online gradient descent (OGD)
with a step size η > 0 achieves an O((1 + PT )/η+ηT ) universal dynamic regret, where PT =
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∑T
t=2∥ut−1 − ut∥2 is the path length of comparators u1, . . . ,uT and thus reflects the non-

stationarity of the environments. When the path length PT was known, one could choose
the optimal step size η∗ = Θ(

√
(1 + PT )/T ) and attain an O(

√
T (1 + PT )) dynamic regret.

However, this path length quantity is hard to know since the universal dynamic regret aims
to provide guarantees against any feasible comparator sequence. The step size η = Θ(1/

√
T )

commonly used in static regret would lead to an inferior O(
√
T (1 + PT )) bound, which

exhibits a large gap from the favorable bound with an oracle step size tuning. Zhang et al.
(2018a) resolve the issue by proposing a novel online algorithm to search the optimal step
size η∗, attaining an O(

√
T (1 + PT )) universal dynamic regret, and they also establish an

Ω(
√
T (1 + PT )) lower bound to show the minimax optimality.

Although the rate is minimax optimal for convex functions, we would like to design
algorithms with more adaptive bounds. Specifically, we aim to enhance the guarantee
for some easy problem instances, particularly when the online functions are smooth, by
replacing the dependence on T by certain problem-dependent quantities that are O(T ) in
the worst case while could be much smaller in benign environments. In the study of static
regret, we can attain such results like small-loss bounds (Srebro et al., 2010) and gradient-
variation bounds (Chiang et al., 2012). Thus, a natural question arises whether it is possible
to achieve similar problem-dependent guarantees for the universal dynamic regret?

Our results. In this paper, extending our preliminary work (Zhao et al., 2020b), we pro-
vide an affirmative answer by designing online algorithms with problem-dependent dynamic
regret bounds. Specifically, we focus on the following two adaptive quantities: the gradient
variation of online functions VT , and the cumulative loss of the comparator sequence FT ,
defined as

VT =
T∑
t=2

sup
x∈X

∥∇ft(x) − ∇ft−1(x)∥2
2, and FT =

T∑
t=1

ft(ut). (4)

The two problem-dependent quantities are both at most O(T ) under standard assumptions
of online learning, while could be much smaller in easier problem instances. We propose two
novel online algorithms called Sword and Sword++ (“Sword” is short for Smoothness-aware
online learning with dynamic regret) that are suitable for different feedback models. Our
algorithms are online ensemble methods (Zhou, 2012; Zhao, 2021), which admit a two-layer
structure with a meta-algorithm running over a group of base-learners. We prove that
they enjoy an O(

√
(1 + PT + min{VT , FT })(1 + PT )) dynamic regret, achieving gradient-

variation and small-loss bounds simultaneously. Comparing to the O(
√
T (1 + PT )) minimax

rate, our result replaces the dependence on T by the problem-dependent quantity PT +
min{VT , FT }. Our bounds become much tighter when the problem is easy (for example
when PT and VT /FT are sublinear in T ), and meanwhile safeguard the same guarantee
in the worst case. Hence, our results are adaptive to the intrinsic difficulty of problem
instances as well as the non-stationarity of environments.

Our first algorithm, Sword, achieves the favorable problem-dependent guarantees under
the multi-gradient feedback model, namely, the player can query gradient information mul-
tiple times at each round. This algorithm is conceptually simple, but the gradient query
complexity is O(log T ) at each round. Our second algorithm, Sword++, is an improved
version that requires only one gradient per iteration, despite using a two-layer online en-
semble structure. As a result, Sword++ is not only computationally efficient but also more
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attractive due to its reduced feedback requirements — Sword++ can be applied to the more
challenging one-gradient feedback model, where the player only receives gradient ∇ft(xt)
as the feedback after submitting the decision xt. Furthermore, it is worth mentioning that
Sword++ has the potential to be extended to more constrained feedback models, such as
the two-point bandit convex optimization, by further leveraging the technique for gradient-
variation static regret minimization presented in (Chiang et al., 2013).

Technical contributions. Note that there exist studies showing that the worst-case dy-
namic regret can benefit from smoothness (Yang et al., 2016; Zhang et al., 2017; Zhao and
Zhang, 2021). However, their analyses do not apply to our universal dynamic regret, as
we cannot exploit the optimality condition of comparators u1, . . . ,uT , in stark contrast
with the worst-case dynamic regret analysis. As a result, we propose an adaptive online
ensemble method to hedge non-stationarity while extracting adaptivity. Specifically, we em-
ploy the meta-base two-layer ensemble to hedge the non-stationarity and utilize optimistic
online learning to reuse the historical gradient information adaptively. Two crucial novel
ingredients are designed in order to achieve favorable problem-dependent guarantees.

• We introduce optimistic mirror descent (OMD) as a unified building block for the
algorithm design of dynamic regret minimization in both meta and base levels. We
present generic and completely modular analysis for the dynamic regret of OMD,
where the negative term is essential for achieving problem-dependent dynamic regret.

• We propose the collaborative online ensemble framework. In addition to employ-
ing optimistic online learning to attain adaptivity and meta-base structure to hedge
non-stationarity, we incorporate a novel decision-deviation correction term, which fa-
cilitates effective collaborations within the two layers and is crucial for achieving the
desired problem-dependent bound while requiring only one gradient per iteration.

We emphasize that these ingredients are particularly important for achieving gradient-
variation dynamic regret, which we will demonstrate to be more fundamental than the
small-loss bound. In particular, our overall solution (especially Sword++) effectively utilizes
negative terms and introduces correction terms to ensure successful collaboration within
the two-layer online ensemble. The overall framework of collaborative online ensemble is
summarized in Section 5, and we believe that the proposed framework has the potential for
broader online learning problems.

Organization. The rest is structured as follows. Section 2 briefly reviews the related
work. In Section 3, we introduce the problem setup and algorithmic framework, where a
generic dynamic regret analysis of optimistic mirror descent is provided. Section 4 presents
our main results, in which the gradient-variation dynamic regret bounds are established.
Section 5 illustrates a generic framework called collaborative online ensemble that is highly
useful for attaining problem-dependent dynamic regret. Section 6 provides some additional
results. The major proofs are presented in Section 7. Furthermore, Section 8 reports the
experiments to empirically support our theoretical findings. Finally, we conclude the paper
in Section 9. Some omitted details and proofs are provided in the appendix.
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2. Related Work

In this section, we present a brief review of static regret and dynamic regret minimization
for online convex optimization.

2.1 Static Regret

Static regret has been extensively studied in online convex optimization. Let T be the time
horizon and d be the dimension, there exist online algorithms with static regret bounded by
O(

√
T ), O(d log T ), and O(log T ) for convex, exponentially concave, and strongly convex

functions, respectively (Zinkevich, 2003; Hazan et al., 2007). These results are proved to
be minimax optimal (Abernethy et al., 2008). More results can be found in the seminal
books (Shalev-Shwartz, 2012; Hazan, 2016) and references therein.

In addition to exploiting the convexity of functions, there are studies improving static
regret by incorporating smoothness, whose main proposal is to replace the dependence on
T by problem-dependent quantities. Such problem-dependent bounds enjoy many benign
properties, in particular, they can safeguard the worst-case minimax rate yet can be much
tighter in easier problem instances. There are usually two kinds of such bounds — small-loss
bounds (Srebro et al., 2010) and gradient-variation bounds (Chiang et al., 2012).

Small-loss bounds are first introduced in the context of prediction with expert ad-
vice (Littlestone and Warmuth, 1994; Freund and Schapire, 1997), which replace the de-
pendence on T by cumulative loss of the best expert. Later, Srebro et al. (2010) show
that in the online convex optimization setting, OGD with a certain step size scheme can
achieve an O(

√
1 + F ∗

T ) small-loss regret bound when the online convex functions are
smooth and non-negative, where F ∗

T is the cumulative loss of the best decision in hind-
sight, namely, F ∗

T = ∑T
t=1 ft(x∗) with x∗ chosen as the offline minimizer. The key technical

ingredient in the analysis is to exploit the self-bounding properties of smooth functions.
Gradient-variation bounds are introduced by Chiang et al. (2012), rooting in the devel-
opment of second-order bounds for prediction with expert advice (Cesa-Bianchi et al.,
2005) and online convex optimization (Hazan and Kale, 2008). For convex and smooth
functions, Chiang et al. (2012) establish an O(

√
1 + VT ) gradient-variation regret bound,

where VT = ∑T
t=2 supx∈X ∥∇ft(x)−∇ft−1(x)∥2

2 measures the cumulative gradient variation.
Gradient-variation bounds are particularly favored in slowly changing environments where
online functions evolve gradually.

In addition, problem-dependent static regret bounds are also studied in the bandit on-
line learning setting, including the gradient-variation bounds for two-point bandit convex
optimization (Chiang et al., 2013), as well as small-loss bounds for multi-armed bandits (Al-
lenberg et al., 2006; Wei and Luo, 2018; Lee et al., 2020b), linear bandits (Lee et al., 2020b),
semi-bandits (Neu, 2015), graph bandits (Lykouris et al., 2018; Lee et al., 2020a), and con-
textual bandits (Allen-Zhu et al., 2018; Foster and Krishnamurthy, 2021), etc.

2.2 Dynamic Regret

Dynamic regret enforces the player to compete with time-varying comparators and thus is fa-
vored in online learning in open and non-stationary environments (Sugiyama and Kawanabe,
2012; Zhao et al., 2021b; Zhou, 2022). The notion of dynamic regret is sometimes referred
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to as tracking regret or shifting regret in the prediction with expert advice setting (Herbster
and Warmuth, 1998, 2001; Bousquet and Warmuth, 2002; Cesa-Bianchi et al., 2012; György
and Szepesvári, 2016). It is known that in the worst case, a sublinear dynamic regret is not
attainable unless imposing certain regularities on the comparator sequence or the function
sequence (Besbes et al., 2015; Jadbabaie et al., 2015). This paper focuses the most common
regularity called the path length introduced by Zinkevich (2003), which measures fluctuation
of the comparators defined by

PT =
T∑
t=2

∥ut−1 − ut∥2. (5)

Note that we simply focus on the Euclidean norm throughout this paper, and it is straight-
forward to extend the notions and results to general primal-dual norms. Other regularities
include the squared path length introduced by Zhang et al. (2017), which is defined as
ST = ∑T

t=2∥ut−1 − ut∥2
2, and the function variation introduced by Besbes et al. (2015)

that measures the cumulative variation with respect to the function value and is defined as
V f
T = ∑T

t=2 supx∈X |ft−1(x) − ft(x)|.
There are two kinds of dynamic regret notions in the previous studies. The universal

dynamic regret, as defined in (2), aims to compare with any feasible comparator sequence,
while the worst-case dynamic regret defined in (3) specifies the comparator sequence to
be the sequence of minimizers of online functions. In the following, we present the related
works respectively. Notice that we will use notations PT and ST for path length and squared
path length of the comparator sequence {ut}t=1,...,T , while adopt the notations P ∗

T and S∗
T

for that of the sequence {x∗
t }t=1,...,T where x∗

t is the minimizer of the online function ft,
namely, P ∗

T = ∑T
t=2∥x∗

t−1 − x∗
t ∥2 and S∗

T = ∑T
t=2∥x∗

t−1 − x∗
t ∥2

2.

Universal dynamic regret. The seminal work of Zinkevich (2003) demonstrates that
online gradient descent (OGD) enjoys an O(

√
T (1 + PT )) universal dynamic regret, which

holds against any feasible comparator sequence. Nevertheless, the result is far from the
Ω(
√
T (1 + PT )) lower bound established by Zhang et al. (2018a), who further close the

gap by proposing a novel online algorithm that attains an optimal rate of O(
√
T (1 + PT ))

for convex functions (Zhang et al., 2018a). Our work further exploits the easiness of the
problem instances and achieve problem-dependent regret guarantees, hence better than the
minimax rate. Zhao et al. (2021a) study the universal dynamic regret for bandit convex
optimization under both one-point and two-point feedback models. The universal dynamic
regret is also studied for variants of the standard OCO model such as OCO with mem-
ory (Zhao et al., 2022) and OCO with switching cost (Zhang et al., 2021). We note that
the aforementioned works and ours are all building on the two-layer meta-base structure.
Concurrent to our conference version paper (Zhao et al., 2020b), Cutkosky (2020) pro-
poses a novel online algorithm that achieves the same minimax optimal dynamic regret
for convex functions as (Zhang et al., 2018a), without relying on meta-base aggregation.
Instead, their method employs the combination strategy developed in parameter-free online
learning (Cutkosky and Orabona, 2018; Cutkosky, 2019). We note that it may be possible
to modify the algorithm of Cutkosky (2020) to achieve small-loss bounds; however, it is
generally challenging to attain gradient-variation bounds, especially under the one-gradient
feedback model. More specifically, it is not hard to modify their framework to be compat-
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ible with optimistic online learning, but one usually needs to exploits additional negative
terms to convert the optimistic quantity ∥∇ft(xt) − ∇ft−1(xt−1)∥2

2 to the gradient varia-
tion supx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2, in order to eliminate the difference between decisions
xt and xt−1. Our proposed algorithms are built upon the meta-base two-layer framework,
which involves a careful exploitation of negative terms in the regret analysis of both meta
and base algorithms, as well as the introduction of additional correction terms. However,
as far as we can see, with only one gradient feedback per round, it is challenging for the
framework of Cutkosky (2020) to achieve the gradient-variation bound due to the lack of
negative terms in the regret analysis.

Worst-case dynamic regret. There are many efforts devoted to studying the worst-case
dynamic regret. Yang et al. (2016) prove that OGD enjoys an O(

√
T (1 + P ∗

T )) worst-case
dynamic regret for convex functions when the path length P ∗

T is known. For strongly con-
vex and smooth functions, Mokhtari et al. (2016) show that an O(P ∗

T ) dynamic regret is
achievable, and Zhang et al. (2017) further propose the online multiple gradient descent
algorithm with an O(min{P ∗

T , S
∗
T }) guarantee. Yang et al. (2016) show that O(P ∗

T ) rate
is attainable for convex and smooth functions, provided that all the minimizers x∗

t ’s lie
in the interior of the domain X . The above results mainly use the (squared) path length
as the non-stationarity measure, which measures the cumulative variation of the compara-
tor sequence. In another line of research, researchers use the variation with respect to
the function values as the measure. Besbes et al. (2015) show that OGD with a restart-
ing strategy attains an O(T 2/3V

f1/3
T ) regret for convex functions when the function varia-

tion V f
T is available, which is improved to O(T 1/3V

f2/3
T ) for 1-dim square loss (Baby and

Wang, 2019). Chen et al. (2019) extend the results of Besbes et al. (2015) to more general
function-variation measures capable of capturing local temporal and spatial changes. To
take advantage of variations in both comparator sequences and function values, (Zhao and
Zhang, 2021) provide an improved analysis for online multiple gradient descent and prove
an O(minP ∗

T , S
∗
T , V

f
T ) worst-case dynamic regret for strongly convex and smooth functions.

For convex and smooth functions, they also demonstrate that the simple greedy strategy
(i.e., xt+1 = x∗

t ∈ arg minx∈X ft(x)) can effectively optimize the worst-case dynamic re-
gret (Zhao and Zhang, 2021, Section 4.2).

3. Problem Setup and Algorithmic Framework

In this section, we first formally state the problem setup, then introduce the foundational
algorithmic framework for dynamic regret minimization, and finally list several assumptions
that might be used in the theoretical analysis.

3.1 Problem Setup

Online Convex Optimization (OCO) can be modeled as an iterated game between the player
and the environments. At iteration t ∈ [T ], the player first chooses the decision xt from
a convex feasible set X ⊆ Rd, then the environments reveal the loss function ft : X 7→ R
and the player suffers the loss ft(xt) and observes a certain information about the function
ft(·). According to the revealed information, the online learning problems are typically
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classified into full-information online learning and partial-information online learning (or
called bandit online learning). In this paper, we focus on the full-information one, which
can be further categorized into the following two setups:

(i) multi-gradient feedback: the player can access the entire gradient function ∇ft(·)
and thus can evaluate the gradient multiple times;

(ii) one-gradient feedback: the player can observe the gradient information ∇ft(xt)
after submitting the decision xt.

In Section 4.2, we develop an online algorithm called Sword with gradient-variation dynamic
regret bounds under the multi-gradient feedback model. In Section 4.3, we present an
improved algorithm called Sword++ that can achieve the same guarantee under the more
challenging one-gradient feedback model.

The typical performance measure is the static regret, which benchmarks the algorithm
with a fixed comparator. To handle non-stationary environments, we focus on the strength-
ened measure called dynamic regret, which compares the online algorithm to a sequence of
time-varying comparators u1, . . . ,uT ∈ X , as defined in (2). An upper bound of dynamic
regret should be a function of comparators, and typically the bound depends on some reg-
ularities that measure the fluctuation of the comparator sequence, such as the path length
PT = ∑T

t=2∥ut − ut−1∥2. Throughout the paper, we focus on the Euclidean norm for
simplicity, and it is straightforward to extend our results to general primal-dual norms.

In addition to the regret measure, we further consider the gradient query complexity.
Note that algorithms designed for the multi-gradient feedback model may query the gra-
dients for multiple times at each round. However, most algorithms designed for the static
regret minimization only require one gradient per iteration, namely, using ∇ft(xt) for the
next update only. Therefore, it is more desirable to achieve the favorable regret guarantees
under the one-gradient feedback model. In other words, our aim is to develop first-order
methods for dynamic regret minimization that require only one gradient query per iteration.

3.2 Optimistic Mirror Descent

We employ the algorithmic framework of Optimistic Mirror Descent (OMD) (Chiang et al.,
2012; Rakhlin and Sridharan, 2013) as a generic building block for designing algorithms
for non-stationary online learning. OMD is a methodology for optimistic online learning.
Compared to the standard online learning setup, the player will now additionally receive
an optimistic vector Mt ∈ Rd at each round, which serves as a hint of the future gradient.
OMD starts from the initial point x̂1 ∈ X and performs the following two-step updates:

xt = arg min
x∈X

ηt⟨Mt,x⟩ + Dψ(x, x̂t),

x̂t+1 = arg min
x∈X

ηt⟨∇ft(xt),x⟩ + Dψ(x, x̂t),
(6)

which firstly updates by the optimism and then updates by the received gradient. In above,
ηt > 0 is a (potentially) time-varying step size, and Dψ(·, ·) denotes the Bregman divergence
associated with the regularizer ψ defined as Dψ(x,y) = ψ(x) − ψ(y) − ⟨∇ψ(y),x − y⟩. We
have the following general result regarding dynamic regret of optimistic mirror descent.
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Theorem 1. Suppose that the regularizer ψ : X 7→ R is 1-strongly convex with respect to
the norm ∥ · ∥, and let ∥ · ∥∗ be the dual norm of ∥ · ∥. The dynamic regret of Optimistic
Mirror Descent whose update rule is specified in (6) is bounded as follows:

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤
T∑
t=1

ηt∥∇ft(xt) −Mt∥2
∗ +

T∑
t=1

1
ηt

(
Dψ(ut, x̂t) − Dψ(ut, x̂t+1)

)

−
T∑
t=1

1
ηt

(
Dψ(x̂t+1,xt) + Dψ(xt, x̂t)

)
,

(7)

which holds for any comparator sequence u1, . . . ,uT ∈ X .

Remark 1. The dynamic regret upper bound in Theorem 1 consists of three terms:

(i) the first term ∑T
t=1 ηt∥∇ft(xt) −Mt∥2

∗ is the adaptivity term that measures the devi-
ation between gradient and optimism;

(ii) the second term ∑T
t=1

1
ηt

(
Dψ(ut, x̂t) − Dψ(ut, x̂t+1)

)
reflects the non-stationarity of

environments and will be converted to the path length of comparators;

(iii) the last negative term −
∑T
t=1

1
ηt

(
Dψ(x̂t+1,xt) + Dψ(xt, x̂t)

)
is crucial and will be

greatly useful for problem-dependent bounds, particularly the gradient-variation one.

Moreover, we emphasize that the above regret guarantee is very general due to the flexibil-
ity in choosing the regularizer ψ and comparators {ut}t=1,...,T . For example, by choosing
the negative-entropy regularizer and competing with the best fixed prediction, the result
recovers the static regret bound of Optimistic Hedge (Syrgkanis et al., 2015); by choosing
the Euclidean regularizer and competing with time-varying compactors, it recovers the dy-
namic regret bound of Online Gradient Descent (Zinkevich, 2003). The versatility of this
optimistic mirror descent framework motivates us to use it as a unified building block for
both algorithm design and theoretical analysis. ¶

3.3 Assumptions

In this part, we list several common assumptions that might be used in the theorems.

Assumption 1. The norm of the gradients of online functions over the domain X is
bounded by G, i.e., ∥∇ft(x)∥2 ≤ G, for all x ∈ X and t ∈ [T ].

Assumption 2. The domain X ⊆ Rd contains the origin 0, and the diameter of the domain
X is at most D, i.e., ∥x − x′∥2 ≤ D for any x,x′ ∈ X .

Assumption 3. All the online functions are L-smooth, i.e., ∥∇ft(x) − ∇ft(x′)∥2 ≤ L∥x −
x′∥2 for any x,x′ ∈ Rd and t ∈ [T ].

Assumption 4. All the online functions are non-negative over Rd.

We have the following remarks regarding the assumptions. The generic dynamic regret
of OMD (Theorem 1) does not require the smoothness assumption (Assumption 3). Never-
theless, it is required in attaining the problem-dependent dynamic regret bounds. In fact,
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even in the static regret analysis, smoothness is demonstrated to be necessary for the first-
order methods to achieve gradient-variation bounds (cf. Lemma 9 of Chiang et al. (2012)
and Theorem 1 of Yang et al. (2014)). Therefore, throughout the paper we focus on the
problem-dependent dynamic regret of convex and smooth functions. Moreover, note that
in Assumption 4 we require the online functions to be non-negative outside the domain X ,
which is a precondition for establishing the self-bounding property for smooth functions and
is commonly used to establish small-loss bounds (Srebro et al., 2010; Zhang et al., 2019;
Zhang and Zhou, 2019). Meanwhile, we treat double logarithmic factors in T as a constant,
following previous studies (Adamskiy et al., 2012; Luo and Schapire, 2015).

4. Gradient-Variation Dynamic Regret

Our paper aims to develop online algorithms that can simultaneously achieve problem-
dependent dynamic regret bounds, which scale with two problem-dependent quantities:
the gradient-variation term VT and the small-loss term FT , as defined in (4). As we will
demonstrate in the next section, the gradient-variation bound is more fundamental than
the small-loss bound. Consequently, we start by focusing on the gradient-variation dynamic
regret in this section. In Section 6, we will then present the small-loss bound and the best-
of-both-worlds bound as implications of the results obtained in this section.

4.1 A Gentle Start

In the study of static regret, Chiang et al. (2012) propose the online extra-gradient descent
(OEGD) algorithm and prove that the algorithm enjoys gradient-variation static regret.
Specifically, OEGD starts from x̂1,x1 ∈ X and then updates by

xt = ΠX [x̂t − η∇ft−1(xt−1)] , x̂t+1 = ΠX [x̂t − η∇ft(xt)] . (8)

We here consider the algorithm with a fixed step size η > 0 for simplicity, and ΠX [·]
denotes the Euclidean projection onto the nearest point in X . For convex and smooth
functions, Chiang et al. (2012) prove that OEGD can achieve an O(

√
1 + VT ) static regret

bound, where VT = ∑T
t=2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2 is the gradient variation.
In the following, we further demonstrate that OEGD also enjoys the gradient-variation

dynamic regret guarantee. Actually, OEGD can be viewed as a specialization of the opti-
mistic mirror descent (6) presented in Section 3.2, by choosing the regularizer ψ(x) = 1

2∥x∥2
2

and the optimism Mt = ∇ft−1(xt−1) as well as a fixed step size η > 0. Then, the general
result of Theorem 1 directly implies the following dynamic regret bound for OEGD, and
the proof can be found in Appendix A.

Lemma 1. Under Assumptions 1, 2, and 3, by choosing η ≤ 1
4L , the dynamic regret of

OMD with a regularizer ψ(x) = 1
2∥x∥2

2 and optimism Mt = ∇ft−1(xt−1) is bounded as

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ), (9)

where VT = ∑T
t=2 supx∈X ∥∇ft(x)−∇ft−1(x)∥2

2 is the gradient variation and PT = ∑T
t=2∥ut−1−

ut∥2 is the path length. The result holds for any comparator sequence u1, . . . ,uT ∈ X .
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Lemma 1 immediately implies a static regret bound. Specifically, by choosing compara-
tors as the best decision in hindsight u1 = . . . = uT ∈ arg minx∈X

∑T
t=1 ft(x) such that the

path length PT = 0, we obtain the existing result (Chiang et al., 2012, Theorem 11):

T∑
t=1

ft(xt) − min
x∈X

T∑
t=1

ft(x) ≤ η(G2 + 2VT ) + D2

2η = O
(√

1 + VT
)
,

where the last step holds by setting the step size η = η∗ = min{
√

D2

G2+2VT
, 1

4L}. Note that
the requirement on knowing VT in the optimal tuning can be removed by either doubling
trick (Cesa-Bianchi et al., 1997) or self-confident tuning (Auer et al., 2002).

However, it is more complicated when competing with a sequence of time-varying com-
parators. The dynamic regret bound exhibited in Lemma 1 suggests that it is crucial to
tune the step size to balance the non-stationarity (path length PT ) and the adaptivity
(gradient-variation VT ) in order to achieve a tight dynamic regret bound. Clearly, the op-
timal tuning is η∗ =

√
(D2 + 2DPT )/(2G2 + 2VT ), which unfortunately requires the prior

information of PT and VT that are generally unavailable. We emphasize that VT is empir-
ically observable in the sense that at round t ∈ [T ] one can observe its internal estimate
Vt = ∑t

s=2 supx∈X ∥∇fs(x) − ∇fs−1(x)∥2
2. By contrast, PT = ∑T

t=2∥ut − ut−1∥2 remains
unknown even after all iterations, since the comparators u1, . . . ,uT can be chosen arbitrar-
ily as long as they are feasible in the domain and thus are entirely unknown. Consequently,
we may use self-confident tuning to remove the dependence on the unknown gradient vari-
ation VT , but the method cannot address the unknown path length PT . In fact, this is the
fundamental problem of non-stationary online learning — how to deal with uncertainty due
to unknown environmental non-stationarity, captured by path length of comparators PT in
the language of dynamic regret minimization.

To simultaneously handle the uncertainty arising from adaptivity and non-stationarity,
in addition to using optimistic online learning to reuse the historical gradients, we further
design an adaptive online ensemble method that can hedge the non-stationarity while ex-
tracting the adaptivity. Our approach deploys a two-layer meta-base structure, in which
multiple base-learners are maintained simultaneously and a meta-algorithm is used to track
the best one. More concretely, we first construct a pool of candidate step sizes to discretize
value range of the optimal step size, and then initialize multiple base-learners simultane-
ously, denoted by B1, . . . ,BN . Each base-learner Bi returns her own prediction xt,i by
running the base-algorithm with a particular step size ηi from the pool. Finally, the inter-
mediate predictions of all the base-learners are combined by a meta-algorithm to produce
the final output xt = ∑N

i=1 pt,ixt,i, where pt ∈ ∆N is the weight distribution.
According to the above procedure, we can decompose dynamic regret into two parts

because of the two-layer meta-base structure.

D-RegretT =
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) =
T∑
t=1

ft(xt) − ft(xt,i)︸ ︷︷ ︸
meta-regret

+
T∑
t=1

ft(xt,i) − ft(ut)︸ ︷︷ ︸
base-regret

, (10)

where {xt}t=1,...,T denotes the final output sequence, and {xt,i}t=1,...,T is the prediction
sequence of base-learner Bi. Notably, the decomposition holds for any base-learner’s index
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i ∈ [N ]. The first part is the difference between cumulative loss of the final output sequence
and that of the prediction sequence of base-learner Bi, which is introduced by the meta-
algorithm and thus named as meta-regret; the second part is the dynamic regret of base-
learner Bi and therefore called base-regret. As a result, we need to make the meta-regret
and base-regret scaling with VT to achieve the desired gradient-variation dynamic regret.

In the following, we present two solutions. The first solution, developed in our conference
paper (Zhao et al., 2020b), is conceptually simpler but requires N = O(log T ) gradient
queries at each round, making it suitable only for the multi-gradient feedback model. The
second solution is an improved algorithm based on a refined analysis of the problem’s
structure, which attains the same dynamic regret guarantee with only one gradient per
iteration and hence suits for the more challenging one-gradient feedback model. Recall that
the definitions of the multi/one-gradient feedback models are presented in Section 3.1.

4.2 Multi-Gradient Feedback: Sword

Our approach, Sword, implements a meta-base online ensemble structure, in which multiple
base-learners are initiated simultaneously (denoted by B1, . . . ,BN ) and the intermediate
predictions of all the base-learners are combined by a meta-algorithm to produce the final
output. Below, we describe the specific settings of the base-algorithm and meta-algorithm.

For the base-algorithm, we simply employ the OEGD algorithm (Chiang et al., 2012),
where the base-learner Bi shall update her local decision {xt,i}t=1,...,T by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1,i)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt,i)] , (11)

where ηi > 0 is the associated step size from the step size pool H = {η1, . . . , ηN} and
the number of base-learner is chosen as N = O(log T ). Lemma 1 ensures an upper
bound of base-regret scaling with the gradient variation, i.e., ∑T

t=1 ft(xt,i) −
∑T
t=1 ft(ut) ≤

O(ηi(1 +VT ) +PT /ηi), whenever the step size satisfies ηi ≤ 1/(4L). The caveat is that each
base-learner requires her own gradient direction for the update, so we need the gradient
information of {∇ft(xt,i)}i=1,...,N at round t ∈ [T ]. Notably, the gradient query complexity
is N = O(log T ) per round instead of one as was desired, consequently, the method devel-
oped in this part only suits for the multi-gradient feedback model. We leave the gradient
query complexity issue for a moment and will resolve it and design an improved algorithm
applicable for the one-gradient feedback model in Section 4.3.

The main difficulty lies in the design and analysis of an appropriate meta-algorithm.
In order to be compatible to the gradient-variation base-regret, the meta-algorithm is re-
quired to incur a problem-dependent meta-regret of order O(

√
VT lnN). However, the

meta-algorithms used in existing studies (van Erven and Koolen, 2016; Zhang et al., 2018a)
cannot satisfy the requirements. For example, the vanilla Hedge suffers an O(

√
T lnN)

meta-regret, which is problem-independent and thus not suitable for us. To this end, we
design a novel variant of Hedge by leveraging the technique of optimistic online learning
with carefully designed optimism, specifically for our problem. Consider the problem of
prediction with expert advice. At the beginning of iteration (t+ 1), in addition to the loss
vector ℓt ∈ RN returned by the experts, the player can receive an optimism mt+1 ∈ RN .
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Optimistic Hedge updates the weight vector pt+1 ∈ ∆N by

pt+1,i ∝ exp
(

−ε
( t∑
s=1

ℓs,i +mt+1,i
))

, ∀i ∈ [N ]. (12)

Here, ε > 0 is the learning rate of the meta-algorithm and we consider a fixed learning
rate for simplicity.1 The optimism mt+1 ∈ RN can be interpreted as an optimistic guess of
the loss of round t + 1, and we thus incorporate it into the cumulative loss for update. It
turns out that Optimistic Hedge can be regarded as an instance of OMD with the negative-
entropy regularizer, as mentioned in Remark 1. Therefore, the general result of Theorem 1
implies the following static regret bound of Optimistic Hedge, and the proof can be found
in Appendix A. Notably, the negative term shown in (13) will be of great importance in the
algorithm design and regret analysis.

Lemma 2. The regret of Optimistic Hedge with a fixed learning rate ε > 0 to any expert
i ∈ [N ] is at most

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ ε
T∑
t=1

∥ℓt − mt∥2
∞ + lnN

ε
− 1

4ε

T∑
t=2

∥pt − pt−1∥2
1. (13)

Let DT = ∑T
t=1∥ℓt − mt∥2

∞ measure the deviation between optimism and gradient. With a
proper learning rate tuning scheme, Optimistic Hedge enjoys an O(

√
DT lnN) meta-regret.

The framework of optimistic online learning is very powerful for designing adaptive
methods, in that the adaptivity quantity DT = ∑T

t=1∥ℓt − mt∥2
∞ is very general and can

be specialized flexibly with different configurations of feedback loss ℓt and optimism mt.
To achieve the desired gradient-variation dynamic regret, we need to investigate the online
ensemble structure carefully. To this end, we specialize Optimistic Hedge in the following
way to make the meta-regret compatible with the desired gradient-variation quantity.

• The feedback loss ℓt ∈ RN is set as the linearized surrogate loss: for t ∈ [T ] and each
i ∈ [N ],

ℓt,i = ⟨∇ft(xt),xt,i⟩. (14)

• The optimism mt ∈ RN is set with a careful design: m1 = 0 and for t ≥ 2 and each
i ∈ [N ],

mt,i = ⟨∇ft−1(x̄t),xt,i⟩, where x̄t =
N∑
i=1

pt−1,ixt,i. (15)

We will explain the motivation of such designs in Remark 2. Note that this construction
of optimism is legitimate as the instrumental variable x̄t only uses the information of pt−1
as well as the local decisions {xt,i}i=1,...,N at time t. Thus, the meta-algorithm of Sword
updates the weight pt+1 ∈ RN by

pt+1,i ∝ exp
(

−ε
( t∑
s=1

⟨∇fs(xs),xs,i⟩ + ⟨∇ft(x̄t+1),xt+1,i⟩
))

, ∀i ∈ [N ]. (16)

1. We adopt the terminology “learning rate” for the meta-algorithm of our approach following the convention
in the prediction with expert advice, and use “step size” for the general online convex optimization.
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Algorithm 1 Sword: meta-algorithm
Input: step size pool H; learning rate ε
1: Initialization: ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive xt+1,i from base-learner Bi
4: Update weight pt+1,i by (16)
5: Predict xt+1 = ∑N

i=1 pt+1,ixt+1,i
6: end for

Algorithm 2 Sword: base-algorithm
Input: step size ηi ∈ H
1: Let x̂1,i,x1,i be any point in X
2: for t = 1 to T do
3: x̂t+1,i = ΠX

[
x̂t,i − ηi∇ft(xt,i)

]
4: xt+1,i = ΠX

[
x̂t+1,i − ηi∇ft(xt,i)

]
5: Send xt+1,i to the meta-algorithm
6: end for

Algorithm 1 summarizes detailed procedures of the meta-algorithm, which in conjunction
with the base-algorithm of Algorithm 2 yields the Sword algorithm.

Remark 2 (design of optimism). The design of optimism in (15), particularly the con-
struction of the instrumental variable x̄t, is crucial and is the most challenging part in this
method. Our design carefully leverages the structure of two-layer online ensemble methods,
specifically, the goal of designing optimism is to approximate the current gradient ∇ft(xt)
(which is unknown) via the available knowledge till round t. We propose to use ∇ft−1(x̄t)
as the approximation, and the difference of online functions delivers the gradient-variation
term supx∈X ∥ft(x)−ft−1(x)∥2

2, while the difference between xt and x̄t can be upper bounded
by the decision variation of the meta-algorithm,

∥xt − x̄t∥2
2 =

∥∥∥∥∥
N∑
i=1

(pt,i − pt−1,i)xt,i
∥∥∥∥∥

2

2
≤
( N∑
i=1

|pt,i − pt−1,i|∥xt,i∥2
)2

≤ D2∥pt − pt−1∥2
1, (17)

which can be eliminated by the negative term in the regret bound of Optimistic Hedge as
shown in (13), providing with a suitable setting for the learning rate of the meta-algorithm.
Summarizing, the aforementioned configurations of feedback loss and optimism will convert
the adaptive quantity DT to the desired gradient variation VT plus the decision variation
of the meta-algorithm, concretely,

∥ℓt − mt∥2
∞

(15)= maxi∈[N ]⟨∇ft(xt) − ∇ft−1(x̄t),xt,i⟩2

≤ D2∥∇ft(xt) − ∇ft−1(x̄t)∥2
2

≤ 2D2(∥∇ft(xt) − ∇ft−1(xt)∥2
2 + ∥∇ft−1(xt) − ∇ft−1(x̄t)∥2

2)
≤ 2D2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2 + 2D2L2∥xt − x̄t∥2
2

≤ 2D2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2
2 + 2D4L2∥pt − pt−1∥2

1,

where the derivation makes use of the boundedness of the feasible domain, triangle inequal-
ity, and the smoothness of online functions. The last term will be canceled by the negative
term in the meta-regret, then we obtain the desired gradient-variation regret guarantee. ¶

The following theorem shows that the meta-regret is at most O(
√

(1 + VT ) lnN), which
is nicely compatible to the attained base-regret. The proof can be found in Section 7.2.
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Theorem 2. Under Assumptions 1, 2, and 3, by setting the learning rate of the meta-
algorithm (16) optimally as ε = min{1/(4D2L),

√
(lnN)/(2D2(G2 + VT ))}, the meta-regret

of Sword (Algorithm 1) is at most

T∑
t=1

ft(xt) −
T∑
t=1

ft(xt,i) ≤ 2D
√

2(G2 + VT ) lnN + 8D2L lnN = O
(√

(1 + VT ) lnN
)
.

Note that the optimal learning rate tuning of the meta-algorithm requires the knowl-
edge of gradient variation VT = ∑T

t=2 supx∈X ∥∇ft(x)−∇ft−1(x)∥2
2. The undesired demand

can be removed by the self-confident tuning method (Auer et al., 2002), which employs a
time-varying learning rate scheme for the meta-algorithm’s update based on internal esti-
mates, roughly, pt+1,i ∝ exp

(
− εt(

∑t
s=1 ℓs,i + mt+1,i)

)
,∀i ∈ [N ] with εt = O(1/

√
1 + Vt)

with an internal estimate Vt = ∑t
s=1 supx∈X ∥∇fs(x) − ∇fs−1(x)∥2

2. Besides, notice that
this Vt is actually not easy to calculate due to the computation of instantaneous variation
supx∈X ∥∇ft(x)−∇ft−1(x)∥2

2, which is a difference of convex functions programming and is
not easy to solve even with the explicit form of functions ft and ft−1. Fortunately, we can
use an alternative twisted quantity V̄T = ∑T

t=2∥∇ft(xt)−∇ft−1(xt−1)∥2
2 for the learning rate

configuration and also achieve the same regret bound via a refined analysis. Then, it suf-
fices to perform the self-confident tuning over V̄T by monitoring the corresponding internal
estimate V̄t = ∑t

s=2∥∇fs(xs)−∇fs−1(xs−1)∥2
2, which avoids the burdensome calculations of

inner optimization problems and thereby significantly streamlines the computational efforts
paid for the adaptive learning rate tuning.

So far, the obtained base-regret bound (Lemma 1) and meta-regret bound (Theorem 2)
are both adaptive to the gradient variation, and we can simply combine them to achieve
the final gradient-variation dynamic regret as stated in Theorem 3, providing with an ap-
propriate candidate step size pool. The proof is provided in Section 7.3.

Theorem 3. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes H as

H =

ηi = min
{ 1

4L, 2
i−1

√
D2

8G2T

}
| i ∈ [N ]

 , (18)

where N = ⌈2−1 log2(G2T/(2D2L2))⌉ + 1 is the number of candidate step sizes; and set
the learning rate of the meta-algorithm as ε = min{1/(4D2L),

√
(lnN)/(2D2(G2 + VT ))}.

Then, Sword satisfies that

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + VT )(1 + PT )
)
,

which holds for any comparators u1, . . . ,uT ∈ X . In above, VT = ∑T
t=2 supx∈X ∥∇ft(x) −

∇ft−1(x)∥2
2 is the gradient variation, and PT = ∑T

t=2∥ut−1 − ut∥2 is the path length.

Remark 3. Compared with the existing O(
√
T (1 + PT )) dynamic regret (Zhang et al.,

2018a), our result is more adaptive in the sense that it replaces T by the problem-dependent
quantity PT +VT . Therefore, the bound will be much tighter in easy problems, for example
when both VT and PT are o(T ). Meanwhile, it safeguards the same minimax rate, since
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both quantities are at most O(T ). Furthermore, because the universal dynamic regret
studied in this paper holds against any comparator sequence, it specializes the static regret
by setting all comparators as the best fixed decision in hindsight, i.e., u1 = . . . = uT = x∗ ∈
arg minx∈X

∑T
t=1 ft(x). Under such a circumstance, the path length PT = ∑T

t=2∥ut−1−ut∥2
becomes zero, so the regret bound in Theorem 3 implies an O(

√
1 + VT ) gradient-variation

static regret bound, recovering the result of Chiang et al. (2012). ¶

4.3 One-Gradient Feedback: Sword++

So far, we have designed an online algorithm (Sword) with the gradient-variation dynamic
regret. While it achieves a favorable regret guarantee, one caveat is that Sword runs
N = O(log T ) base-learners simultaneously and each base-learner requires her own gra-
dient direction for the update. Consequently, the overall algorithm necessitates O(log T )
gradient queries at each iteration, making it time-consuming and only applicable to the
multi-gradient feedback model. In contrast, algorithms designed for static regret minimiza-
tion typically work well under the more challenging one-gradient feedback model, namely,
they only require the gradient information ∇ft(xt) for updates. Given this, it is natural to
ask whether it is possible to design online algorithms that can achieve favorable dynamic
regret while only using one gradient query per iteration, making them applicable to the
one-gradient feedback online learning.

We resolve the question affirmatively by designing an algorithm that requires only one
gradient query per iteration and provably enjoys the same gradient-variation dynamic re-
gret as Sword. The new algorithm, called Sword++, also implements an online ensemble
structure. Comparing to Sword presented in Section 4.2, the key novel ingredient is the
framework of collaborative online ensemble. We carefully introduce correction terms to the
online loss and optimism, forming a biased surrogate loss and a surrogate optimism, which
are then fed to the meta-algorithm. By further exploiting the negative terms in the meta
and base levels, the overall algorithm ensures effective collaboration within the meta and
base two layers, thereby achieving the favorable gradient-variation dynamic regret with only
one gradient query per iteration.

In the following, we describe the details of Sword++. The algorithm maintains multiple
base-learners denoted by B1, . . . ,BN , which are performed with different step sizes and
then combined by a meta-algorithm to track the best one. An exponential step size grid is
adopted as the schedule, denoted by H = {ηi = c · 2i | i ∈ [N ]} with N = O(log T ) for some
constant c > 0 (usually scaling with poly(1/T )), whose specific setting will be given later.

Base-algorithm. Instead of performing updates over the original loss ft as shown in (11),
all the base-learners of Sword++ update over the linearized surrogate loss gt : X 7→ R
defined gt(x) = ⟨∇ft(xt),x⟩, and moreover, the optimism is chosen as Mt = ∇gt−1(xt−1,i)
for each base-learner Bi with i ∈ [N ]. By definition, we have ∇gt(xt,i) = ∇ft(xt), so each
base-learner Bi essentially performs the following update at each iteration:

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] . (19)

Using above update steps, we no longer need to evaluate the gradient ∇ft(xt,i) over the
local decisions for every base-learner, as was done by Sword (see its update rule in (11)).
Instead, a single call of ∇ft(xt) is sufficient at each round for the update in Sword++.
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We note that although the linearized trick has previously been employed in the meta-
base structure for achieving the minimax dynamic regret O(

√
T (1 + PT )) with one gradient

per iteration (Zhang et al., 2018a), this modification alone is far from enough to obtain
problem-dependent dynamic regret. To see this, we can check the regret of the base-learner
updated with the surrogate loss gt(x). A similar argument of Lemma 1 shows that the
base-regret over the linearized loss (#) ≜∑T

t=1 gt(xt,i) −
∑T
t=1 gt(ut) satisfies

(#) ≤ ηi(G2 + 2VT ) + D2 + 2DPT
2ηi

+ 4L2
T∑
t=2

∥xt − xt−1∥2
2 − 1

ηi

T∑
t=2

∥xt,i − xt−1,i∥2
2.

In the analysis of Sword, because the gradient ∇ft(xt,i) is evaluated on every base-learner’s
own decision xt,i, the additional positive term (the third one) is 4L2∑T

t=2∥xt,i − xt−1,i∥2
2,

which can be cancelled by the negative term −
∑T
t=2∥xt,i−xt−1,i∥2

2/ηi whenever the step size
is set appropriately. However, when the base-learner updates her decision over the surrogate
loss, the additional positive term becomes 4L2∥xt − xt−1∥2

2, which cannot be handled by
the negative term of any base-learner. Thus, more advanced mechanisms are required to
achieve the problem-dependent dynamic regret under the one-gradient query model.

To tackle the difficulty, our primary idea is to facilitate collaboration between the meta
and base levels. Specifically, we aim to leverage negative terms from both levels to handle
the positive term. However, it turns out that the positive term cannot be entirely offset by
the combined negative terms from meta and base levels. To address this issue, we introduce
correction terms to the feedback loss and optimism in the meta-algorithm. This generates
a new negative term that, together with the negative term from the meta level, effectively
cancels out the positive term. Nevertheless, another new positive term emerges due to the
injected correction, which we ensure can be managed by the negative term from the base
level. As a result, the overall undesired positive term is finally addressed.

The above forms the main idea of our proposed collaborative online ensemble framework.
In the following, we outline the specific setup of the meta-algorithm. We will provide a
brief explanation of the design of corrections in Remark 4 and offer a more comprehensive
elaboration on the general framework of collaborative online ensemble in Section 5.

Meta-algorithm. We still employ Optimistic Hedge (OMD with the negative-entropy
regularizer) as the meta-algorithm, but nevertheless require innovative design in the feed-
back loss and optimism. Specifically, instead of simply using the linearized surrogate loss
ℓt,i ≜ ⟨∇ft(xt),xt,i⟩ as the feedback loss like Sword (see the update rule in (14)), we carefully
construct the surrogate loss in the following way and send it to the meta-algorithm.

• The feedback loss ℓt ∈ RN is constructed as follows: for each i ∈ [N ], ℓ1,i =
⟨∇f1(x1),x1,i⟩ and for t ≥ 2, it composes the linearized surrogate loss ⟨∇ft(xt),xt,i⟩
with a decision-deviation correction term, namely,

ℓt,i = ⟨∇ft(xt),xt,i⟩ + λ∥xt,i − xt−1,i∥2
2. (20)

• The optimism mt ∈ RN is similarly configured as follows: m1 = 0 and for t ≥ 2 and
i ∈ [N ], the optimism also admits a decision-deviation correction term, namely,

mt,i = ⟨Mt,xt,i⟩ + λ∥xt,i − xt−1,i∥2
2 = ⟨∇ft−1(xt−1),xt,i⟩ + λ∥xt,i − xt−1,i∥2

2. (21)
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Both feedback loss and optimism admit an additional correction term λ∥xt,i − xt−1,i∥2
2 that

measures the stability of the local decisions returned by the base-learner, where λ > 0 is
the correction coefficient to be determined later. Overall, the meta-algorithm of Sword++
updates the weight pt+1 ∈ RN as follows: for any i ∈ [N ],

pt+1,i ∝ exp
(

−ε
( t∑
s=1

ℓs,i +mt+1,i
))

, (22)

where ε > 0 is (for simplicity) chosen as a fixed learning rate of the meta-algorithm, and
the feedback loss ℓt and optimism mt are defined in (20) and (21), respectively. Notably,
the meta-algorithm only requires the gradient information of ∇ft(xt) at round t and thus
is feasible in the one-gradient feedback model.

Remark 4 (design of correction term). We emphasize that the correction term λ∥xt,i −
xt−1,i∥2

2, appearing in the construction of both feedback loss and optimism, is crucial for
the design and is the most challenging part in this method. We briefly explain the moti-
vation. As we mentioned earlier, the use of linearized surrogate loss gt(x) will introduce
an additional term ∑T

t=2∥xt − xt−1∥2
2, which cannot be canceled by the negative term of

any base-regret, namely, −
∑T
t=2∥xt,i − xt−1,i∥2

2. To address the difficulty, we scrutinize the
positive term and find that actually it can be further expanded as:

∥xt − xt−1∥2
2 =

∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2
∥∥∥∥∥
N∑
i=1

pt,ixt,i −
N∑
i=1

pt,ixt−1,i

∥∥∥∥∥
2

2
+ 2

∥∥∥∥∥
N∑
i=1

pt,ixt−1,i −
N∑
i=1

pt−1,ixt−1,i

∥∥∥∥∥
2

2

≤ 2
(

N∑
i=1

pt,i∥xt,i − xt−1,i∥2

)2

+ 2
(

N∑
i=1

|pt,i − pt−1,i|∥xt−1,i∥2

)2

≤ 2
N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2 + 2D2∥pt − pt−1∥2

1,

which concludes that
T∑
t=2

∥xt − xt−1∥2
2 ≤ 2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2 + 2D2

T∑
t=2

∥pt − pt−1∥2
1. (23)

Consequently, it is crucial to exploit negative terms in both meta-regret and base-regret
to cancel out the positive term. The second positive term (deviation of meta-algorithm’s
weights) can be readily canceled by the negative term of meta-regret. However, addressing
the first positive term is more intricate, as it is essentially a weighted combination of the
base-learners’ decision variation. We tackle this positive term by algorithmically adding the
decision-variation correction term in the feedback loss and optimism of the meta-algorithm,
as well as leveraging the negative term of base-regret. The underlying intuition is to penalize
base-learners with large decision variations, so as to ensure a small enough variation of final
decisions. As such, we have facilitated the collaborations between the base and meta levels
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Algorithm 3 Sword++: meta-algorithm
Input: step size pool H; learning rate ε
1: Initialization: ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive xt+1,i from base-learner Bi
4: Update weight pt+1,i by (20)–(22)
5: Predict xt+1 = ∑N

i=1 pt+1,ixt+1,i
6: end for

Algorithm 4 Sword++: base-algorithm
Input: step size ηi ∈ H
1: Let x̂1,i,x1 be any point in X
2: for t = 1 to T do
3: x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)]
4: xt+1,i = ΠX [x̂t+1,i − ηi∇ft(xt)]
5: Send xt+1,i to the meta-algorithm
6: end for

— the overall positive term (∑T
t=2∥xt − xt−1∥2

2) is jointly cancelled out by the negative
term of meta-regret (−∑T

t=2∥pt − pt−1∥2
1) and the one due to the injected corrections

(−∑T
t=2

∑N
i=1 pt,i∥xt,i − xt−1,i∥2

2); and meanwhile, the injected corrections will introduce a
new positive term (∑T

t=2∥xt,i−xt−1,i∥2
2), which can be further tackled by the negative term of

base-regret (−∑T
t=2∥xt,i− xt−1,i∥2

2). Only through such collaborations within the two-layer
online ensembles can the proposed Sword++ algorithm attain the desired gradient-variation
dynamic regret, utilizing only one gradient per iteration. A more in-depth discussion on
this collaborative online ensemble will be presented in Section 5. ¶

We summarize the procedures of Sword++ in Algorithm 3 (meta-algorithm) and Algo-
rithm 4 (base-algorithm). Though multiple base-learners are performed with different step
sizes to tackle the uncertainty of non-stationary environments, Sword++ requires the gradi-
ent information of ∇ft(xt) only at round t and then broadcasts it to all the base-learners for
local update. Therefore, Sword++ is feasible for the one-gradient feedback model. More-
over, the algorithm provably achieves the same gradient-variation dynamic regret as Sword,
shown in Theorem 4, whose proof is presented in Section 7.4.

Theorem 4. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes H as

H =

ηi = min
{ 1

8L,

√
D2

8G2T
· 2i−1

}
| i ∈ [N ]

 , (24)

where N = ⌈2−1 log2(G2T/(8D2L2))⌉ + 1 is the number of candidate step sizes; further
set the correction coefficient as λ = 2L and the learning rate of the meta-algorithm as
ε = min

{
1/(8D2L),

√
(lnN)/(D2(∥∇f1(x1)∥2

2 + V̄T ))
}
. Then, Sword++ satisfies

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + VT )(1 + PT )
)

for any comparator sequence u1, . . . ,uT ∈ X . In above, VT = ∑T
t=2 supx∈X ∥∇ft(x) −

∇ft−1(x)∥2
2 is the gradient variation, V̄T = ∑T

t=2∥∇ft(xt) − ∇ft−1(xt−1)∥2
2 is the variant of

VT , and PT = ∑T
t=2∥ut−1 − ut∥2 is the path length.

Note that the optimal learning rate tuning of the meta-algorithm requires the knowledge
of V̄T = ∑T

t=2∥∇ft(xt) − ∇ft−1(xt−1)∥2
2. Actually, this unpleasant dependence can be
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removed by performing the self-confident tuning over V̄T by monitoring the internal estimate
V̄t = ∑t

s=2∥∇fs(xs) − ∇fs−1(xs−1)∥2
2. Importantly, this adaptive learning rate tuning can

be realized under the one-gradient feedback model, namely, only ∇ft(xt) available at round
t. To avoid clutters, we here stick to a fixed learning rate with dependence on V̄T and defer
an adaptive learning rate version to Appendix B.

Up to now, we have shown that it is possible to design online methods to achieve stronger
guarantees than static methods (recall that universal dynamic regret can immediately imply
static regret) under the challenging one-gradient feedback online learning, and meanwhile
suffer no computational overhead in terms of the gradient query complexity.

5. A Generic Framework: Collaborative Online Ensemble

In this section, we formally introduce the proposed collaborative online ensemble framework,
a generic algorithmic template designed to achieve (problem-dependent) dynamic regret
guarantees. This framework is particularly crucial for attaining gradient-variation bounds.
As will be demonstrated shortly, our proposed Sword (in Section 4.2) and Sword++ (in
Section 4.3) can both be considered as specific instantiations.

5.1 Algorithmic Template

We focus on the standard OCO setup as specified in Section 3.1. At iteration t ∈ [T ], the
player first chooses the decision xt ∈ X , then the environments reveal the loss function
ft : X 7→ R. Subsequently, the player suffers the loss ft(xt) and observes certain gradient
information of ∇ft(·) according to the feedback model.

The overall algorithmic template implements a meta-base two-layer online ensemble.
There are three crucial ingredients in collaborative online ensemble: (i) the surrogate loss,
(ii) the surrogate optimism, and (iii) the correction terms. Additionally, the negative terms,
hidden in the analysis, play a significant role within the framework. To better present the
algorithmic template, we introduce the following notations:

• for the base-algorithm, let gbase
t (·) : X 7→ R be the base surrogate loss and hbase

t (·) :
X 7→ R be the base surrogate optimism;

• for the meta-algorithm, let gmeta
t (·) : X 7→ R be the meta surrogate loss and hmeta

t (·) :
X 7→ R be the meta surrogate optimism, and let ct ∈ Rd be the correction term.

The base-algorithm updates the decisions {xt,i}Ni=1 by Optimistic OGD over the base
surrogate loss and optimism, that is,

xt,i = ΠX
[
x̂t,i − ηi∇hbase

t (xt−1,i)
]
, x̂t+1,i = ΠX

[
x̂t,i − ηi∇gbase

t (xt,i)
]
, (25)

where ηi > 0 is a fixed step size specified by the step size pool H = {η1, . . . , ηN}. Subse-
quently, the player makes the final decision at this round by xt = ∑N

i=1 pt,ixt,i.
The meta-algorithm will then update the weight pt+1 ∈ ∆N by Optimistic Hedge over

the feedback loss ℓt ∈ Rd and optimism mt ∈ Rd,

pt+1,i ∝ exp
(

−ε
( t∑
s=1

ℓs,i +mt+1,i
))

, (26)
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Table 1: Summary of three instantiations of the collaborative online ensemble framework,
including Sword, Sword++, and Sword.optimism.

Algorithm gbase
t (x) hbase

t (x) gmeta
t (x) hmeta

t (x) ct

Sword ft(x) ft−1(x) ⟨∇ft(xt),x⟩ ⟨∇ft−1(x̄t),x⟩ ct = 0
Sword++ ⟨∇ft(xt),x⟩ ⟨∇ft−1(xt−1),x⟩ ⟨∇ft(xt),x⟩ ⟨∇ft−1(xt−1),x⟩ ct,i = ∥xt,i − xt−1,i∥2

2

Sword.optimism ⟨∇ft(xt),x⟩ ⟨Mt,x⟩ ⟨∇ft(xt),x⟩ ⟨Mt,x⟩ ct,i = ∥xt,i − xt−1,i∥2
2

where ε > 0 is (for simplicity) chosen as a fixed learning rate of the meta-algorithm and the
feedback loss ℓt ∈ Rd and optimism mt ∈ Rd are defined as

ℓt,i = gmeta
t (xt,i) + λct,i, and mt,i = hmeta

t (xt,i) + λct,i, (27)

with λ ≥ 0 being the coefficient of the correction terms.

Remark 5. The meta-base updates in (25) and (26) are quite versatile, as there are many
options for constructing the surrogate (meta/base) loss, optimism, and the correction term.
We remind that a feasible construction must adhere to the feedback model — in the multi-
gradient feedback model, the entire gradient function ∇ft(·) is available, while in the one-
gradient feedback model, only the gradient ∇ft(xt) is available to the player. In Section 5.2,
we will present several concrete instantiations of the generic algorithmic template, including
the proposed Sword and Sword++ in the earlier subsections. ¶

5.2 Instantiations

In this part, we present three instantiations of the generic algorithmic template, including
Sword, Sword++, and another important instantiation, which we refer to as Sword.optimism.
For clarity, we provide a summary of these instantiations in Table 1.

Recovering Sword. We instantiate the algorithmic template as follows: setting

• base surrogate loss as gbase
t (x) = ft(x) and base optimism as hbase

t (x) = ft−1(x);

• meta surrogate loss as gmeta
t (x) = ⟨∇ft(xt),x⟩ and meta optimism as hmeta

t (x) =
⟨∇ft−1(x̄t),x⟩, as well as correction term as ct = 0.

Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1,i)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt,i)] ,

and the meta-algorithm updates by

pt+1,i ∝ exp
(

−ε
( t∑
s=1

⟨∇fs(xs),xs,i⟩ + ⟨∇ft(x̄t+1),xt,i⟩
))

.

The update procedures precisely recover Sword as presented in Algorithms 1 and 2. Note
that in Sword, there is no correction terms, since the gradient-variation dynamic regret
bound is attained by guaranteeing gradient-variation meta-regret for the meta-algorithm
and gradient-variation base-regret for the base-algorithm, respectively.
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Recovering Sword++. We instantiate the algorithmic template as follows: setting

• base surrogate loss as gbase
t (x) = ⟨∇ft(xt),x⟩ and base optimism as hbase

t (x) =
⟨∇ft−1(xt−1),x⟩;

• meta surrogate loss as gmeta
t (x) = ⟨∇ft(xt),x⟩ and meta optimism as hmeta

t (x) =
⟨∇ft−1(xt−1),x⟩, as well as correction term ct as ct,i = ∥xt,i − xt−1,i∥2

2 with x0,1 = 0.

Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηi∇ft−1(xt−1)] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] ,

and the meta-algorithm updates by

pt+1,i ∝ exp
(

− ε
( t∑
s=1

⟨∇fs(xs),xs,i⟩ + λ
t+1∑
s=1

∥xs,i − xs−1,i∥2
2 + ⟨∇ft(xt),xt+1,i⟩

))
.

The update procedures precisely correspond to Sword++ as presented in Algorithms 3
and 4. We emphasize once more that the algorithmic updates only necessitate querying the
gradient ∇ft(xt) at each round t ∈ [T ].

Another important instantiation. We further present another instantiation of the
template that can be of independent interest. The resulting algorithm can achieve an
optimistic dynamic regret bound of order O(

√
AT (1 + PT )), where AT = ∑T

t=1∥∇ft(xt) −
Mt∥2

2 measures the quality of the optimistic vectors {Mt}Tt=1. We instantiate the algorithmic
template as follows: setting

• base surrogate loss as gbase
t (x) = ⟨∇ft(xt),x⟩ and base optimism as hbase

t (x) =
⟨Mt,x⟩;

• meta surrogate loss as gmeta
t (x) = ⟨∇ft(xt),x⟩ and meta optimism as hmeta

t (x) =
⟨Mt,x⟩, as well as correction term ct as ct,i = ∥xt,i − xt−1,i∥2

2 with x0,1 = 0.

Then, the template updates in the following way: the base-algorithm updates by

xt,i = ΠX [x̂t,i − ηiMt] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] , (28)

and the meta-algorithm updates by

pt+1,i ∝ exp
(

− ε
( t∑
s=1

⟨∇fs(xs),xs,i⟩ + λ
t+1∑
s=1

∥xs,i − xs−1,i∥2
2 + ⟨Mt+1,xt+1,i⟩

))
. (29)

We refer to the above meta-base updates, (28) and (29), as Sword.optimism. Its dynamic
regret analysis detailed in Section 5.3. Notice that by setting the optimism as the last-round
gradient, specifically, Mt = ∇ft−1(xt−1), Sword.optimism recovers Sword++ exactly.
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5.3 Theoretical Guarantee

In this part, we present the dynamic regret analysis for Sword.optimism, which is arguably
the most general instantiation of the collaborative online ensemble template. It is straight-
forward to extend Theorem 5 for the generic template presented in Section 5.1, specifically,
the meta-base updates in (25) and (26). However, the various variables in the generic tem-
plate may somewhat obscure the core ideas. Therefore, we choose to showcase the dynamic
regret analysis for Sword.optimism, as its analysis effectively captures the essence and its
algorithm is also sufficient general (for instance, it can specialize Sword++).

Theorem 5. Under Assumptions 1 and 2, set the pool of candidate step sizes H as

H =

ηi = min
{
η̄,

√
D2

8G2T
· 2i−1

}
| i ∈ [N ]

 , (30)

where N = ⌈2−1 log2((8G2T η̄2)/D2)⌉ + 1 is the number of candidate step sizes; further set
the learning rate of the meta-algorithm as

ε = min
{
ε̄,

√
lnN

D2∑T
t=1∥∇ft(xt) −Mt∥2

2

}
. (31)

Then, decisions returned by Sword.optimism (namely, meta-algorithm as (29) and base-
algorithm as (28)) satisfy that for any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ 2
√
D2(lnN)AT + 2

√
(D2 + 2DPT )AT

+ 2 lnN
ε̄

+ 2(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i − 1

4ε̄Sp − λSmix.

(32)

In above, AT = ∑T
t=1∥∇ft(xt) − Mt∥2

2 is the adaptivity term measuring the quality of op-
timistic gradient vectors {Mt}Tt=1, and PT = ∑T

t=2∥ut−1 − ut∥2 is the path length of com-
parators. The terms Sx,i = ∑T

t=2∥xt,i − xt−1,i∥2
2, Sp = ∑T

t=2∥pt − pt−1∥2
1, and Smix =∑T

t=2
∑N
i=1 pt,i∥xt,i − xt−1,i∥2

2 measures the stability of the decisions returned by the base-
algorithm, meta-algorithm, and overall algorithm, respectively.

The proof of Theorem 5 is in Section 7.5. Notice that by setting the correction coefficient
λ = 0 and setting clipped parameters η̄ and ε̄ as appropriate constants, Theorem 5 directly
implies an O(

√
AT (1 + PT )) dynamic regret for Sword.optimism.

As aforementioned, when setting the optimism as Mt = ∇ft−1(xt−1), Sword.optimism
recovers Sword++. Consequently, Theorem 5 serves as a preliminary analysis for Sword++
by substituting Mt = ∇ft−1(xt−1) in the upper bound (32). By further combining the
analysis of (23) in Remark 4, we can then prove the gradient-variation bound of Theorem 4,
see the detailed argument in Section 7.4. The key element is to effectively cancel out
the additional positive term using negative terms and correction terms jointly, which are
strategically introduced due to the collaboration between the meta and base levels.
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6. Implication, Significance, and Lower Bound

In this section, we present several additional results, including the implication to small-
loss dynamic regret, the implication to the worst-case dynamic regret, the significance of
problem-dependent bounds, and a lower bound.

6.1 Implication to Small-Loss Dynamic Regret

In this part, we investigate another problem-dependent quantity — the cumulative loss of
comparators defined as FT = ∑T

t=1 ft(ut).
In the conference version, we propose the Sword algorithm (presented in Section 4.2)

to achieve the gradient-variation dynamic regret, and then propose a variant to attain the
small-loss bound, which employs OGD as the base-algorithm and uses the vanilla Hedge
with linearized surrogate loss as the meta-algorithm (i.e., choosing the optimistic vector
Mt = 0 for both meta- and base-algorithms). In the current paper, we demonstrate that
the improved algorithm Sword++ designed in Section 4.3 itself provably achieves the small-
loss dynamic regret without any algorithmic modification. In fact, we have the following
theorem regarding the small-loss bound of Sword++, whose proof is in Section 7.6.

Theorem 6. Set the parameters the same as those in Theorem 4. Under Assumptions 1, 2, 3,
and 4, Sword++ satisfies that

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + FT )(1 + PT )
)
,

and hence achieves the best-of-both-worlds guarantee:

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + min{VT , FT })(1 + PT )
)
.

The bounds hold for any comparator sequence u1, . . . ,uT ∈ X . In above, FT = ∑T
t=1 ft(ut)

is the cumulative loss of comparators, VT = ∑T
t=2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2 is the gra-
dient variation, and PT = ∑T

t=2∥ut−1 − ut∥2 is the path length.

Comparing with Theorem 4, one more assumption (Assumption 4) is required. This
non-negativity assumption is a precondition for establishing the self-bounding property for
convex and smooth functions (Srebro et al., 2010), and thus is commonly used in the small-
loss analysis of online learning and stochastic optimization (Srebro et al., 2010; Cotter et al.,
2011; Zhang et al., 2013, 2019; Zhang and Zhou, 2019).

Remark 6. Our conference version (Zhao et al., 2020b) achieves the best-of-both-worlds
bound in a different way, in which we use a heterogeneous model selection method of learning
an optimism (Rakhlin and Sridharan, 2013) since different optimistic vectors are used for the
small-loss and gradient-variation bounds. As such, three algorithms (Swordvar, Swordsmall,
and Swordbest) are designed to achieve the three different bounds (gradient-variation, small-
loss, and best-of-both-worlds bounds) respectively. By contrast, Theorem 6 indicates that
the Sword++ algorithm can achieve all the three problem-dependent dynamic regret bounds
without any modifications, owing to its one-gradient query complexity property. ¶
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Remark 7. Comparing to the O(
√
T (1 + PT )) minimax rate, Theorem 6 replaces the

dependence on T by the problem-dependent quantity PT + min{VT , FT } and thus achieves
dual adaptivity in terms of both gradient variation VT and the small-loss quantity FT .
Furthermore, one may wonder whether it is possible to replace T by min{VT , FT } only.
This requires a lower bound argument and we only have a partial answer. Specifically, we
prove an Ω(PT ) lower bound (see Theorem 8 in Section 6.4) by constructing a problem
instance via probabilistic methods, in which the small-loss quantity satisfies FT = 0. As a
result, an O(

√
(1 + FT )(1 + PT )) upper bound will contradict with the lower bound, hence

eliminating the general possibility of attaining this result. Nevertheless, we fail to provide a
similar reasoning for the gradient-variation bound. Indeed, we have the following conjectures
on the tightness of the gradient-variation dynamic regret. For the multi-gradient feedback
model, we lean to believe that the O(

√
(1 + PT + VT )(1 + PT )) rate is not optimal but the

optimal one might be O(
√

(1 + VT )(1 + PT )). For the one-gradient feedback model, we
conjecture that our obtained rate is already optimal. Note that the latter setup is actually
the one we are mostly concerned with, and we will study the optimality in the future. ¶

6.2 Implication to Worst-Case Dynamic Regret

In this part, we present the implication of the universal dynamic regret to the worst-case
dynamic regret. As discussed in Section 2.2, there are two kinds of worst-case dynamic regret
bounds, with different regularities: the path-length bound with P ∗

T = ∑T
t=2∥x∗

t−1 − x∗
t ∥2

and the function-variation bound with V f
T = ∑T

t=2 supx∈X |ft−1(x) − ft(x)|. The following
theorem provides a unified reduction to both of them.

Theorem 7. Let AT ∈ R+ be a certain adaptivity term. Suppose there exists an algorithm
A that guarantees

D-RegretT (u1, . . . ,uT ) ≤
√
AT (D + PT ), (33)

for any comparator sequence u1, . . .uT ∈ X with path length PT = ∑T
t=2∥ut − ut−1∥2, then

the algorithm A enjoys the following worst-case dynamic regret bounds:

D-RegretT (x∗
1, . . . ,x∗

T ) ≤ 3
√
DAT + min

{√
ATP ∗

T , 5D
1/3T 1/3A

1/3
T (V f

T )1/3
}
. (34)

Theorem 7 demonstrates that an O(
√
AT (1 + PT )) universal dynamic regret bound can

directly imply an O(
√
AT + min{

√
ATP ∗

T , (TATV
f
T )1/3}) worst-case dynamic regret bound.

A typical choice of this adaptivity term is AT = ∑T
t=1∥∇ft(xt) − Mt∥2

2 that measures the
quality of optimistic gradient vectors {Mt}Tt=1. Then, the implication matches the best-
known optimistic worst-case dynamic regret bound presented in (Jadbabaie et al., 2015;
Zhang et al., 2020b), taking the best of the path-length and function-variation regularities.
It is worth noting that Jadbabaie et al. (2015) achieve this result through a novel and
sophisticated doubling trick scheme, which will introduce a potentially non-convex inner
optimization supx∈X |ft(x) − ft−1(x)| at iteration t ∈ [T ]. In contrast, our Theorem 7
demonstrates that when the algorithm achieves an O(

√
AT (1 + PT )) universal dynamic

regret, it automatically obtains the desired worst-case dynamic regret bounds. Notably,
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our proposed Sword.optimism algorithm (see the last instantiation in Section 5.2) already
satisfies this requirement using the collaborative online ensemble framework.

The proof of Theorem 7 can be found in Section 7.7. Given the universal dynamic
regret bound (33), one can immediately derive an O(

√
AT +

√
ATP ∗

T ) worst-case path-
length bound by setting ut = x∗

t for any t ∈ [T ], but it is less straightforward to obtain the
O(

√
AT + T 1/3A

1/3
T (V f

T )1/3) function-variation bound. To achieve so, we need to introduce
a reference comparator sequence that exhibits piecewise-stationary behavior. The desired
function-variation bound is then achievable by optimally tuning the stationary length of the
sequence during the analysis. The idea was introduced in Zhang et al. (2020b, Appendix
A.2), but an explicit reduction was not provided. We offer a clear presentation of the results.

Moreover, in Theorem 7, we focus on the O(
√
AT (1 + PT )) universal dynamic regret

bound, which incorporates the general adaptivity term AT . Employing a similar proof
methodology, we can also convert the gradient-variation/small-loss universal dynamic regret
bounds, attained by Sword and Sword++, into the context of worst-case dynamic regret.
We omit the details, as the universal dynamic regret has already been established as a more
reasonable performance measure for non-stationary online convex optimization.

6.3 Significance of Problem-Dependent Bounds

In this part, we justify the significance of our problem-dependent dynamic regret bounds.
We present two concrete problem instances to demonstrate that it is possible to achieve a
constant dynamic regret bound instead of the minimax rate O(

√
T (1 + PT )) by exploiting

the problem’s structure.
We consider the quadratic loss function of the form ft(x) = 1

2(at · x− bt)2, where at ̸= 0
and x ∈ X = [−1, 1]. Clearly, the online function ft : R 7→ R is convex and smooth. Denote
by T the time horizon. The coefficients at and bt will be specified below in each instance.

Instance 1 (VT ≪ FT ). Let the time horizon T = 2K + 1 be odd with K > 2. We set the
coefficients at = 0.5 − t−1

T and bt = 1 for all t ∈ [T ].

We set the comparator ut to be the minimizer of ft, i.e, ut = x∗
t = arg minx∈X ft(x).

Clearly, ut = 1 for t ∈ [K+1], and ut = −1 for t = K+2, . . . , T . A direct calculation shows

VT =
T∑
t=2

sup
x∈X

|(a2
t−1 − a2

t )x− (at−1 − at)|2 =
T∑
t=2

sup
x∈X

∣∣∣∣(T − 2t+ 3
T 2

)
· x− 1

T

∣∣∣∣2

=
K+2∑
t=2

(2T − (2t− 3)
T 2

)2
+

T∑
t=K+3

(2t− 3
T 2

)2
≤

T∑
t=2

( 2
T

)2
= O(1).

FT =
T∑
t=1

1
2(atut − bt)2 =

K+1∑
t=1

1
2

(
0.5 − t− 1

T
− 1

)2
+

T∑
t=K+2

1
2

(
−0.5 + t− 1

T
− 1

)2
= Θ(T ).

We can observe that the gradient variation VT = O(1) is significantly smaller than the small-
loss quantity FT = Θ(T ) (as well as the problem-independent quantity T ) in this instance;
and meanwhile, the path length is PT = O(1). Then, the minimax dynamic regret bound is
O(
√
T (1 + PT )) = O(

√
T ); the small-loss bound is O(

√
(1 + PT + FT )(1 + PT )) = O(

√
T );
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and the gradient-variation bound is O(
√

(1 + PT + VT )(1 + PT )) = O(1). As a result, by
exploiting the problem’s structure, Sword++ can enjoy a constant dynamic regret in this
scenario, significantly improving upon the problem-independent bound of order O(

√
T ).

Instance 2 (FT ≪ VT ). Let the time horizon T = 2K be even. During the first half
iterations, (at, bt) is set as (1, 1) on odd rounds and (0.5, 0.5) on even rounds. During the
remaining iterations, (at, bt) is set as (1,−1) on odd rounds and (0.5,−0.5) on even rounds.

We set the comparator ut to be the minimizer of ft, i.e, ut = x∗
t = arg minx∈X ft(x).

Clearly, ut = 1 for t ∈ [K], and ut = −1 for t = K + 1, . . . , T . A direct calculation shows

VT =
T∑
t=2

sup
x∈X

|(a2
t−1 − a2

t )x− (at−1bt−1 − atbt)|2 = Θ(T ), FT = 0.

We can see that the small-loss quantity FT = 0 is considerably smaller than the gradient
variation VT = Θ(T ) (as well as the problem-independent quantity T ) in this scenario; and
meanwhile, the path length is PT = O(1). Then, the minimax dynamic regret bound is
O(
√
T (1 + PT )) = O(

√
T ); the gradient-variation bound is O(

√
(1 + PT + VT )(1 + PT )) =

O(
√
T ); and the small-loss bound is O(

√
(1 + PT + FT )(1 + PT )) = O(1). As a result, by

exploiting the problem’s structure, Sword++ can enjoy a constant dynamic regret in this
scenario, significantly improving upon the problem-independent bound of order O(

√
T ).

6.4 A Lower Bound

We here present a lower bound for dynamic regret of convex and smooth functions.

Theorem 8. For any online algorithm A, there always exists a sequence of convex and
smooth functions f1, . . . , fT and a sequence of comparators u1, . . . ,uT , such that

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) = Ω
(
PT (u1, . . . ,uT )

)
. (35)

The proof of Theorem 8 can be found in Section 7.8. The theorem is proved by the
probabilistic method, and in the constructed problem instance, the small-loss quantity is
FT = ∑T

t=1 ft(ut) = 0. As a result, an O(
√

(1 + FT )(1 + PT )) upper bound would contra-
dict with the Ω(PT ) lower bound, as one can verify that O(

√
(1 + FT )(1 + PT )) = O(

√
PT ),

which can be smaller than the Ω(PT ) lower bound. Hence, the lower bound eliminates
the general possibility of attaining a better small-loss dynamic regret. Nevertheless, as the
gradient variation VT = ∑T

t=2 supx∈X ∥∇ft(x)−∇ft−1(x)∥2
2 is larger than 0 in this instance,

we cannot rule out the possibility of the O(
√

(1 + VT )(1 + PT )) upper bound.

7. Proofs

This section presents the proofs of main results, including Theorem 2 and Theorem 3 of
Section 4.2, as well as Theorem 4 and Theorem 6 of Section 4.3.
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7.1 Proof of Theorem 1

Proof The instantaneous dynamic regret can be decomposed in the following way:

ft(xt) − ft(ut) ≤ ⟨∇ft(xt),xt − ut⟩
= ⟨∇ft(xt) −Mt,xt − x̂t+1⟩︸ ︷︷ ︸

term (a)

+ ⟨Mt,xt − x̂t+1⟩︸ ︷︷ ︸
term (b)

+ ⟨∇ft(xt), x̂t+1 − ut⟩︸ ︷︷ ︸
term (c)

.

In the following, we will bound the three terms respectively. In brief, we use the stability
lemma (Lemma 5) to bound term (a) and appeal to the Bregman proximal inequality
(Lemma 4) to bound term (b) and term (c). Below we present the precise arguments.

We first investigate term (a). Intuitively, the prediction xt should be close the x̂t+1
when the optimistic vector Mt is close to the gradient of the next iteration ∇ft(xt). The
intuition is formalized in the stability lemma (Chiang et al., 2012, Propostion 7), as restated
in Lemma 5 of Appendix C. Indeed, the stability lemma implies ∥xt− x̂t+1∥ ≤ ηt∥∇ft(xt)−
Mt∥∗ and consequently,

term (a) = ⟨∇ft(xt) −Mt,xt − x̂t+1⟩
≤ ∥∇ft(xt) −Mt∥∗∥xt − x̂t+1∥ ≤ ηt∥∇ft(xt) −Mt∥2

∗.

We now analyze term (b) and term (c). By the Bregman proximal inequality (Lemma 4)
and the OMD update step xt = arg minx∈X ηt⟨Mt,x⟩ + Dψ(x, x̂t), we have

term (b) = ⟨Mt,xt − x̂t+1⟩ ≤ 1
ηt

(
Dψ(x̂t+1, x̂t) − Dψ(x̂t+1,xt) − Dψ(xt, x̂t)

)
.

Similarly, the OMD update step x̂t+1 = arg minx∈X ηt⟨∇ft(xt),x⟩ + Dψ(x, x̂t) implies

term (c) = ⟨∇ft(xt), x̂t+1 − ut⟩ ≤ 1
ηt

(
Dψ(ut, x̂t) − Dψ(ut, x̂t+1) − Dψ(x̂t+1, x̂t)

)
.

Combining the three upper bounds completes the proof.

7.2 Proof of Theorem 2

Proof Recall the definitions of feedback loss ℓt ∈ RN in (14) and optimism mt ∈ RN
in (15), which are restated below for ease of reading: ℓt,i = ⟨∇ft(xt),xt,i⟩ and mt,i =
⟨∇ft−1(x̄t),xt,i⟩ where x̄t = ∑N

i=1 pt−1,ixt,i. Substituting them into Lemma 2 yields
T∑
t=1

⟨∇ft(xt),xt − xt,i⟩ ≤ ε
T∑
t=1

∥ℓt − mt∥2
∞ + lnN

ε
− 1

4ε

T∑
t=2

∥pt − pt−1∥2
1. (36)

The adaptivity term can be further upper bounded as follows:

∥ℓt − mt∥2
∞

(15)= maxi∈[N ]⟨∇ft(xt) − ∇ft−1(x̄t),xt,i⟩2

≤ D2∥∇ft(xt) − ∇ft−1(x̄t)∥2
2

≤ 2D2(∥∇ft(xt) − ∇ft−1(xt)∥2
2 + ∥∇ft−1(xt) − ∇ft−1(x̄t)∥2

2)
≤ 2D2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2 + 2D2L2∥xt − x̄t∥2
2

≤ 2D2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2
2 + 2D4L2∥pt − pt−1∥2

1, (37)
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where the inequality (37) holds because of the following fact

∥xt − x̄t∥2
2 =

∥∥∥ N∑
i=1

(pt,i − pt−1,i)xt,i
∥∥∥2

2
≤
( N∑
i=1

|pt,i − pt−1,i|∥xt,i∥2
)2

≤ D2∥pt − pt−1∥2
1.

Substituting (37) into (36) and exploiting the boundedness of the gradient norm, we get

T∑
t=1

⟨∇ft(xt),xt − xt,i⟩ ≤ 2εD2(G2 + VT ) + lnN
ε

+
(

2D4L2ε− 1
4ε

) T∑
t=2

∥pt − pt−1∥2
1.

By setting ε = min{1/(4D2L),
√

(lnN)/(2D2(G2 + VT ))}, by Lemma 7, we obtain

T∑
t=1

⟨∇ft(xt),xt − xt,i⟩ ≤ 2D
√

2(G2 + VT ) lnN + 8D2L lnN,

which completes the proof as ft(xt) − ft(xt,i) ≤ ⟨∇ft(xt),xt − xt,i⟩ holds for any t ∈ [T ]
due to the convexity of loss functions.

7.3 Proof of Theorem 3

Proof As stated in (10), dynamic regret can be decomposed into two parts:

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤
T∑
t=1

ft(xt) −
T∑
t=1

ft(xt,i)︸ ︷︷ ︸
meta-regret

+
T∑
t=1

ft(xt,i) −
T∑
t=1

ft(ut)︸ ︷︷ ︸
base-regret

, (38)

which holds for any base-learner’s index i ∈ [N ]. We now presents the upper bounds of the
meta-regret and base-regret, respectively.

Upper bound of meta-regret. Theorem 2 shows that the meta-regret against any base-
learner’s index i ∈ [N ] can be bounded by

meta-regret =
T∑
t=1

ft(xt) −
T∑
t=1

ft(xt,i) ≤ 2D
√

2(4G2 + VT ) lnN + 8D2L lnN. (39)

Upper bound of base-regret. Lemma 1 indicates that for any index i ∈ [N ], the
dynamic regret of the base-learner is at most

base-regret =
T∑
t=1

ft(xt,i) −
T∑
t=1

ft(ut) ≤ ηi(G2 + 2VT ) + 1
2ηi

(D2 + 2DPT ), (40)

where ηi ∈ H is the step size associated with the i-th base-learner. Recall in Lemma 1,
we require the step size ηi ≤ 1/(4L) to leverage the negative term in the regret analy-
sis. Denote by η∗ =

√
(D2 + 2DPT )/(G2 + 2VT ) the optimal step size without consider-

ing the constraint and by η† = min{1/(4L), η∗} the clipped one. Notice that we have
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η1 =
√
D2/(8G2T ), ηN = 1/(4L), and η1 ≤ η† ≤ ηN , due to path length PT = ∑T

t=2∥ut −
ut−1∥2 ∈ [0, DT ] and gradient variation VT = ∑T

t=2 supx∈X ∥∇ft(x)−∇ft−1(x)∥2
2 ≤ 4G2(T−

1) by Assumption 1 and Assumption 2. More importantly, owing to the construction of
the step size pool H in (18), we can assure that there exists an index i∗ ∈ [N ] such that
ηi∗ ≤ η† ≤ ηi∗+1 = 2ηi∗ . As a result, we pick i = i∗ in (40) and get

base-regret ≤ ηi∗(G2 + 2VT ) + D2 + 2DPT
2ηi∗

≤ η†(G2 + 2VT ) + D2 + 2DPT
η† (41)

≤ 2
√

(G2 + 2VT )(D2 + 2DPT ) + 8L(D2 + 2DPT ) (42)

≤ O
(√

(1 + PT + VT )(1 + PT )
)
. (43)

In above, (42) holds because η† is either η∗ or 1/(4L) and

• when η† = η∗, R.H.S of (41) = 2
√

(G2 + 2VT )(D2 + 2DPT );

• when η† = 1/(4L), we have η∗ =
√

(D2 + 2DPT )/(G2 + 2VT ) ≥ 1
4L , which implies

that 1
4L(G2 + VT ) ≤ 4L(D2 + 2DPT ). Under such a case, R.H.S of (41) = 4L(D2 +

2DPT ) + 1
4L(G2 + 2VT ) ≤ 8L(D2 + 2DPT ).

Combining the two upper bounds yields (42). Moreover, (43) follows from
√
a +

√
b ≤√

2(a+ b), ∀a, b > 0.

Upper bound of overall dynamic regret. Note that the meta-base regret decomposi-
tion (38), meta-regret upper bound (39), and base-regret upper bound (40) all hold for any
index i ∈ [N ]. Hence, we can choose the index as i∗ as specified above and get

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)

≤ 2D
√

2(G2 + VT ) lnN + 8D2L lnN + ηi∗(G2 + 2VT ) + D2 + 2DPT
2ηi∗

≤ O(
√

1 + VT ) + O(
√

(1 + PT + VT )(1 + PT ))

= O
(√

(1 + PT + VT )(1 + PT )
)
,

where the second inequality is by (43). Hence, we complete the proof of Theorem 3.

7.4 Proof of Theorem 4

Proof It is important to note that Sword++ is essentially an instantiation of the unified
online ensemble framework presented in Section 5, as specified in Section 5.2. Therefore,
for simplicity, we will prove the dynamic regret of Sword++ by building upon the general
theorem for the collaborative online ensemble (namely, Theorem 5).
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Indeed, we can obtain a dynamic regret upper bound of Sword++ by substituting Mt =
∇ft−1(xt−1) into (32) of Theorem 5. And we focus on the adaptivity term AT , which can
be further expanded as

AT ≤ G2 +
T∑
t=2

∥∇ft(xt) − ∇ft−1(xt−1)∥2
2

≤ G2 + 2
T∑
t=2

∥∇ft(xt) − ∇ft−1(xt)∥2
2 + 2

T∑
t=2

∥∇ft−1(xt) − ∇ft−1(xt−1)∥2
2

≤ G2 + 2 sup
x∈X

T∑
t=2

∥∇ft(x) − ∇ft−1(x)∥2
2 + 2L2

T∑
t=2

∥xt − xt−1∥2
2

≤ G2 + 2VT + 4L2Smix + 4D2L2Sp, (44)

where the third inequality is by smoothness of online functions and the last inequality holds
by the same argument of deriving (23) and definitions of VT , Smix and Sp. As a result, the
first term of (32) can be further bounded by

2
√
D2(lnN)AT

≤ 2
√
D2(lnN) (G2 + 2VT + 4L2Smix + 4D2L2Sp)

≤ 2
√
D2(lnN) (G2 + 2VT ) + 2

√
D2(lnN)(4L2Smix + 4D2L2Sp)

≤ 2
√
D2(lnN) (G2 + 2VT ) + 2 lnN

ε̄
+ 8ε̄D2L2Smix + 8ε̄D4L2Sp, (45)

where the second inequality is due to the fact that
√
a+ b ≤

√
a+

√
b for any a, b > 0 and

the last inequality is a consequence of the AM-GM inequality. Using a similar argument,
we can bound the second term of (32) by

2
√

(D2 + 2DPT )AT

≤ 2
√

(D2 + 2DPT )(G2 + 2VT + 4L2Smix + 4D2L2Sp)

≤ 2
√

(D2 + 2DPT )(G2 + 2VT ) + 2D2 + 4DPT
η̄

+ 8η̄L2Smix + 8η̄D2L2Sp. (46)

Plugging (45) and (46) into (32), we get the following dynamic regret bound,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)

≤ 2
√

lnN (G2D2 + 2D2VT ) + 2
√

(D2 + 2DPT )(G2 + 2VT ) + 4 lnN
ε̄

+ 4(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i +

(
8η̄D2L2 + 8ε̄D4L2 − 1

4ε̄

)
Sp +

(
8η̄L2 + 8ε̄D2L2 − λ

)
Smix.

We complete the proof by dropping the last three negative terms, which is guaranteed by
the parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L). We finally mention
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that in above derivations, the term lnN = O(log log T ) is a double logarithmic factor in
T , which is treated as a constant throughout the paper (see the statement at the end of
Section 3.3) following previous studies (Adamskiy et al., 2012; Luo and Schapire, 2015).2

7.5 Proof of Theorem 5

Proof The proof shares the same spirit with that of Theorem 3, where we decompose the
overall dynamic regret into the meta-regret and base-regret. The difference is that we now
use a linearized surrogate loss function to substitute the original loss function. Indeed,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤
T∑
t=1

⟨∇ft(xt),xt − ut⟩

=
T∑
t=1

⟨∇ft(xt),xt − xt,i⟩︸ ︷︷ ︸
meta-regret

−
T∑
t=1

⟨∇ft(xt),xt,i − ut⟩︸ ︷︷ ︸
base-regret

.
(47)

Notably, the above meta-base regret decomposition holds for any base-learner’s index i ∈
[N ]. In the following, we upper bound these two terms respectively.

Upper bound of meta-regret. According to the definitions of the feedback loss ℓt and
the optimism mt, see the definition below (26), we can rewrite the meta-regret as

meta-regret =
T∑
t=1

N∑
i=1

pt,i · ⟨∇ft(xt),xt,i⟩ −
T∑
t=1

⟨∇ft(xt),xt,i⟩

=
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i − λ
T∑
t=1

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2 + λ

T∑
t=1

∥xt,i − xt−1,i∥2
2.

As the meta-algorithm is an instance of OMD, we can exploit Lemma 2 to get that

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ ε
T∑
t=1

∥ℓt − mt∥2
∞ + lnN

ε
− 1

4ε

T∑
t=2

∥pt − pt−1∥2
1

≤ εD2
T∑
t=1

∥∇ft(xt) −Mt∥2
2 + lnN

ε
− 1

4ε

T∑
t=2

∥pt − pt−1∥2
1

≤ 2
√
D2(lnN)AT + 2 lnN

ε̄
− 1

4ε̄

T∑
t=2

∥pt − pt−1∥2
1,

where AT = ∑T
t=1∥∇ft(xt) − Mt∥2

2 is the adaptivity term measuring the quality of op-
timistic gradient vectors. The last inequality is true due to the setting of step size ε =

2. Actually, this O(log log T ) term can be improved to log log PT by imposing a non-uniform prior over the
base-learners, and then can be strictly omitted in the O(·)-notation. We here omit the details and a
similar argument can be found in (Zhang et al., 2018a, Section 4.3 Proof of Theorem 3).
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min{ε̄,
√

(lnN)/(D2AT )} and Lemma 7. Combining above two inequalities, we obtain

meta-regret ≤ 2
√
D2(lnN)AT + 2 lnN

ε̄
− 1

4ε̄

T∑
t=2

∥pt − pt−1∥2
1

− λ
T∑
t=1

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2 + λ

T∑
t=1

∥xt,i − xt−1,i∥2
2 (48)

Upper bound of base-regret. Since the base-algorithm can be seen as an instance of
OMD running over linearized surrogate loss gt(x) = ⟨∇ft(xt),x⟩ with ψ(x) = 1

2∥x∥2
2, we

can apply Lemma 1 to obtain the base-regret for any index i ∈ [N ] as

base-regret =
T∑
t=1

gt(xt,i) −
T∑
t=1

gt(ut)

≤ ηi

T∑
t=1

∥∇ft(xt) −Mt∥2
2 + D2 + 2DPT

2ηi
− 1

4ηi

T∑
t=2

∥xt,i − xt−1,i∥2
2

≤ ηiAT + D2 + 2DPT
2ηi

− 1
4η̄

T∑
t=2

∥xt,i − xt−1,i∥2
2, (49)

where the first inequality is a direct consequence of Lemma 1 with a fixed step size.

Upper bound of overall dynamic regret. Combining the meta-regret (48) and the
base-regret (49) with (47), for any i ∈ [N ], we arrive at the following result:

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)

≤ 2
√
D2(lnN)AT + ηiAT + D2 + 2DPT

2ηi
+ 2 lnN

ε̄

+
(
λ− 1

4η̄

) T∑
t=2

∥xt,i − xt−1,i∥2
2 − 1

4ε̄

T∑
t=2

∥pt − pt−1∥2
1 − λ

T∑
t=1

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2. (50)

Here, we remain to choose the best base-learner to make the term ηiAT + D2+2DPT
2ηi

tightest
possible. Note that the optimal step size is η∗ =

√
(D2 + 2DPT )/AT , but nevertheless, the

step size we should identify is actually η† = {η∗, η̄} due to the threshold in the construction
of the step size pool (30). Indeed, it can be verified that the candidate step sizes range from
η1 =

√
D2

8G2T to ηN = η̄. We discuss the upper bound in two cases.

• when η† =
√

(D2 + 2DPT )/AT , the optimal step size η∗ provably lies in the range of
H and there must be an index i∗ satisfying that ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Therefore,
we will choose the compared index as i = i∗ and obtain that ηi∗AT + D2+2DPT

2ηi∗ ≤
η∗AT + D2+2DPT

η∗ = 2
√

(D2 + 2DPT )AT

• when η† = η̄, we will choose the compared index as i = N and obtain that ηNAT +
D2+2DPT

2ηN
= η̄AT + D2+2DPT

2η̄ ≤ (2D2 + 4DPT )/η̄.
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As a result, taking both cases into account yields
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)

≤ 2
√
D2 lnNAT + 2

√
(D2 + 2DPT )AT + 2 lnN

ε̄
+ 2(D2 + 2DPT )

η̄

+
(
λ− 1

4η̄

) T∑
t=2

∥xt,i − xt−1,i∥2
2 − 1

4ε̄

T∑
t=2

∥pt − pt−1∥2
1 − λ

T∑
t=1

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2,

which completes the proof.

7.6 Proof of Theorem 6

Proof The proof shares the same spirit as that of Theorem 4, whereas we upper bound the
adaptivity term in a different way to achieve the small-loss bound. Specifically, we convert
the adaptivity term to the cumulative loss of decisions defined by FXT = ∑T

t=1 ft(xt).

AT = ∥∇f1(x1)∥2
2 +

T∑
t=2

∥∇ft(xt) − ∇ft−1(xt−1)∥2
2

≤ ∥∇f1(x1)∥2
2 + 2

T∑
t=2

∥∇ft(xt)∥2
2 + 2

T∑
t=2

∥∇ft−1(xt−1)∥2
2

≤ 8L
T∑
t=1

ft(xt) + 8L
T∑
t=2

ft−1(xt−1) ≤ 16L
T∑
t=1

ft(xt) = 16LFXT ,

where the second inequality comes from the self-bounding property of smooth and non-
negative functions as shown in Lemma 6. Then, a direct application of Theorem 5 with
the parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L) indicates that the
dynamic regret can be bounded by

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ 2
√

16LD2 lnNFXT + 2
√

16L(D2 + 2DPT )FXT

+ 16D2L lnN + 16L(D2 + 2DPT ).

It remains to convert the dynamic regret bound with respect to the cumulative loss of
predictions FXT to that of the comparator FT = ∑T

t=1 ft(ut). According to the definition of
FT and FXT , the above inequality implies that

FXT − FT ≤ 2
√

16L(D2 lnN +D2 + 2DPT )FXT + 16L(D2 lnN +D2 + 2DPT )

≤ 2
√

16L(D2 lnN +D2 + 2DPT )(FT + 16L(D2 lnN +D2 + 2DPT ))
+ 80L(D2 lnN +D2 + 2DPT )

= O(
√

(1 + PT + FT )(1 + PT )) + O(1 + PT )

= O(
√

(1 + PT + FT )(1 + PT )), (51)
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where the first inequality is due to the fact that
√
a+

√
b ≤

√
2(a+ b) holds for any a, b ≥ 0,

and the second inequality comes from Lemma 9. We have completed the proof.

7.7 Proof of Theorem 7

Proof By choosing ut = x∗
t and the universal dynamic regret bound of D-RegretT (u1, . . . ,uT ) ≤√

AT (D + PT ), we can directly obtain

D-RegretT (x∗
1, . . . ,x∗

T ) ≤
√
AT (D + P ∗

T ), (52)

which is the path-length worst-case dynamic regret bound.
In the following, we focus on the function-variation type bound. This is achieved by

following the arguments of Zhang et al. (2020b), we introduce a virtual piece-wise stationary
comparator sequence that only changes every ∆ ∈ [1, T ] iterations. Specifically, denoting
by Im = [(m− 1)∆ + 1,min{m∆, T}] ⊆ [1, T ] the m-th interval, we define the comparator
over the interval Im as x∗

Im
= arg minx∈X

∑
t∈Im

ft(x). There are in total M = ⌈T/∆⌉
intervals. Then, we can decompose the worst-case dynamic regret as

D-RegretT (x∗
1, . . . ,x∗

T ) =
T∑
t=1

ft(xt) −
T∑
t=1

ft(x∗
t )

=
T∑
t=1

ft(xt) −
M∑
m=1

∑
t∈Im

ft(x∗
Im

)
︸ ︷︷ ︸

term (a)

+
M∑
m=1

∑
t∈Im

ft(x∗
Im

) −
T∑
t=1

ft(x∗
t )︸ ︷︷ ︸

term (b)

.

For term (a), since the piece-wise stationary comparator sequence only change M − 1 times
over the time horizon, its path length is at most D(M −1). As a consequence, the universal
dynamic regret guarantee (33) of the algorithm ensures

term (a) ≤
√
AT (D +D(M − 1)) ≤

√
DAT

(
1 + T

∆

)
≤
√
DAT +

√
DTAT

∆ .

Moreover, the argument in Besbes et al. (2015, Proposition 2) shows that

term (b) ≤ 2∆V f
T .

Combining the upper bounds for term (a) and term (b), we obtain

D-RegretT (x∗
1, . . . ,x∗

T ) ≤
√
DAT +

√
DTAT

∆ + 2∆V f
T .

The optimal choice of the interval length is ∆∗ := (DTAT )1/3(V f
T )−2/3, which will lead

to an O(
√
AT + A

1
3
TT

1
3 (V f

T ) 1
3 ) worst-case dynamic regret. However, a caveat is that the

interval length ∆ ∈ [T ] should be a positive integer. We thus use the clipped version
∆† := min {⌈∆∗⌉ , T}. We show that the desired bound (34) is achievable with ∆† by
considering the following three cases.
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• Case 1 (1 ≤ ∆∗ ≤ T ): in such a case, ∆† = ⌈∆∗⌉ and we have ∆∗ ≤ ∆† ≤ 2∆∗.
Then, the dynamic regret is bounded by

D-RegretT (x∗
1, . . . ,x∗

T ) ≤
√
DAT +

√
DTAT

∆∗
+ 4∆∗V

f
T ≤

√
DAT + 5D

1
3A

1
3
TT

1
3 (V f

T )
1
3 .

We complete the proof for case 1 by combining the result with the path-length worst-
case dynamic regret bound in (52).

• Case 2 (∆∗ > T ): in such a case, ∆† = T and
√
DAT ≥ TV f

T . Then, we have

D-RegretT (x∗
1, . . . ,x∗

T ) ≤
√
DAT +

√
DAT + 2TV f

T ≤ 3
√
DAT .

We complete the proof for case 2 by combining the result with the path-length worst-
case dynamic regret bound in (52).

• Case 3 (∆∗ ≤ 1): in such a case, ∆† = 1 and
√
DATT ≤ V f

T . Since P ∗
T ≤ DT , we have√

ATP ∗
T ≤

√
DATT ≤ D

1
3A

1
3
TT

1
3 (V f

T ) 1
3 , indicating that the path-length bound (52) is

tighter than the desired result (34), which completes the proof for case 3.
Overall, the proof is completed by combining the above three cases.

7.8 Proof of Theorem 8

Proof The theorem is proved by the probabilistic method, following the proof of Zhang
et al. (2017, Theorem 5). For iterations t = 1, . . . , T , we randomly sample a convex and
smooth function ft : Rd 7→ R from the distribution P.

More specifically, we construct the function as ft(x) = ∥x − σεt∥2
2, where σ > 0 and

εt ∈ Rd is a random vector with components sampled independently from the Rademacher
distribution, i.e., εt(i) = 1 or −1 with equal probability of 50%. We further set the com-
parator ut = x∗

t ∈ arg minx∈X ft(x) = σεt. Denote by xt the decision returned by any
deterministic online algorithm A. Then the expected dynamic regret is defined as

E[D-RegretT ] = E
[
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)
]
.

In the following we show that E[D-RegretT ] ≥ E[PT (u1, . . . ,uT )]. On one hand,

E[D-RegretT ] = E
[
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut)
]

=
T∑
t=1

E[∥xt − σεt∥2
2]

=
T∑
t=1

E[∥xt∥2
2 + 2σ⟨xt, εt⟩ + σ2∥εt∥2

2] ≥ dTσ2,

where the last inequality holds since σ⟨xt, εt⟩ ≥ 0 and E[σ2∥εt∥2
2] ≥ dσ2 for any t ≥ 1. On

the other hand, we have

E[PT (u1, . . . ,uT )] = σ ·
T∑
t=2

E[∥εt − εt−1∥2] = σ ·
T∑
t=2

E


√√√√ d∑
i=1

δ2
t (i)

 ≤ 2
√
dTσ,
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where δt(i) = εt(i) − εt−1(i). By choosing σ ≥ 2/
√
d, we can ensure that E[D-RegretT ] ≥

E[PT (u1, . . . ,uT )]. We note that the choice of σ might lead to a violation of the assumption
of domain boundedness, which can be easily fixed by the rescaling. So the probabilistic argu-
ment implies that for any algorithm A there exists a sequence of online functions f1, . . . , fT
such that D-RegretT ≥ PT (u1, . . . ,uT ), which concludes the proof.

8. Experiments

In this section, we provide empirical studies to validate the effectiveness of our proposed
algorithm and support the theoretical findings.

Settings. We simulate the online prediction environments as follows. The player sequen-
tially receives the feature of an instance and is then required to make the prediction. We
focus on the problem of online regression, where at each round an instance (xt, yt) is received
with xt ∈ X ⊆ Rd being the feature and yt ∈ Y ⊆ R being the corresponding label. At
each round, the player first receives the feature xt and is required to make the prediction by
ŷt = x⊤

t wt based on the learned model wt ∈ W ⊆ Rd; then, the ground-truth label yt ∈ R
is revealed and the player suffers a loss of ℓ(yt, ŷt), where in the simulation we choose the
Huber loss defined as

ℓ(y, ŷ) =
{1

2(y − ŷ)2, for |y − ŷ| ≤ δ,

δ(|y − ŷ| − 1
2δ), otherwise.

As a result, the online function can be regarded as a composition of the loss function and the
data item, that is, ft : W 7→ R with ft(w) = ℓ(yt, ŷt). It can be verified that the functions
are convex, and satisfy the condition of non-negativity and smoothness. The player will
receive the feedback of the online function and subsequently update her model.

Datasets. We compare the performance on both synthetic and real-world datasets. First,
the synthetic data are generated as follows: at each round, the feature xt ∈ Rd is randomly
generated from a ball with a radius of Γ, i.e., B = {x ∈ Rd | ∥x∥2 ≤ Γ}; the associated label
is set as yt = x⊤

t w∗
t +εt, where εt is the random noise drawn from [0, 0.1] and w∗

t ∈ Rd is the
underlying model. The underlying model w∗

t is randomly sampled from a ball with a radius
of D/2 (recall that D is the diameter of the feasible domain throughout the paper), and it
is forced to be stationary within a stage and will be changed every S rounds to simulate the
non-stationary environments with abrupt changes. In our simulation, we set Γ = 1, D = 2,
d = 5, T = 50000, S = 1000, and δ = 2. Next, we employ a real-world dataset called Sulfur
recovery unit (SRU) (Zhao et al., 2021b), which is a regression dataset with slowly evolving
distribution changes. There are in total 10,081 data samples representing the records of gas
diffusion, where the feature consists of five different chemical and physical indexes and the
label is the concentration of SO2.

Contenders. We compare the proposed algorithm Sword++ with the following three
contenders: (i) OGD (Zinkevich, 2003), online gradient descent, which is an OCO algorithm
designed for optimizing static regret; (ii) Ader (Zhang et al., 2018a), an OCO algorithm
designed for optimizing dynamic regret yet with only problem-independent guarantee; (iii)
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Figure 1: Performance comparisons of all algorithms (OGD, Ader, Sword, and Sword++)
in terms of cumulative loss.
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Figure 2: Performance comparisons of all algorithms (OGD, Ader, Sword, and Sword++)
in terms of running time (in seconds).

Sword, the algorithm proposed in Section 4.2, which achieves problem-dependent dynamic
regret guarantees yet requires multiple gradients per iteration.

Results. We repeat the experiments for five times and report the mean and the standard
deviation in Figure 1 and Figure 2. In Figure 1, we examine the performance in terms
of cumulative loss. First, we can observe that OGD incurs a large cumulative loss over
the horizon and is not able to effectively learn from the non-stationary environments. By
contrast, both Ader and our approach (Sword, Sword++) achieve a satisfactory performance
in present of distribution changes. Moreover, Sword and Sword++ exploit the adaptivity of
the problem instance and thus achieve an encouraging empirical behavior than Ader, which
demonstrates the empirical effectiveness. Figure 2 reports the running time comparison,
where the y-axis uses a logarithmic scale for a better presentation. We can observe that OGD
is the most computationally efficient; besides, Ader and Sword++ are also comparable. By
contrast, Sword requires significantly more running time. The result accords to our theory
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well, in that the gradient computation is the most time-consuming in our simulations.
Theoretically, both Sword++ and Ader (with linearized surrogate loss) only require one
gradient query per iteration, which shares the same gradient query complexity with OGD.
On the contrary, Sword needs to query N = O(log T ) gradients at each round and is thus
much more computational inefficient. To summarize, the empirical results validate the
advantage of Sword++, which behaves well and is also computationally lightweight.

9. Conclusion

In this paper, we exploit the easiness of problem instances to enhance the universal dynamic
regret. We propose two novel online ensemble algorithms, Sword and Sword++, for convex
and smooth online learning. Both algorithms achieve a best-of-both-worlds dynamic regret
of order O(

√
(1 + PT + min{VT , FT })(1 + PT )), where VT measures the gradient variation

and FT is the cumulative loss of comparators. These quantities are at most O(T ) yet
can be very small when the problem is easy, hence reflecting the difficulty of problem in-
stance. Consequently, our bounds can outperform the O(

√
T (1 + PT )) minimax dynamic

regret (Zhang et al., 2018a) by exploiting smoothness. Our results are accomplished by
several crucial technical ingredients. We adopt optimistic mirror descent as a unified build-
ing block for both base and meta algorithms, and carefully exploit the negative terms in
the regret analysis. Moreover, in the design of Sword++, we introduce the framework of
collaborative online ensemble, which emphasizes the construction of surrogate loss in the
algorithm design and devises a decision-deviation correction term in conjunction with the
linearized loss to facilitate collaboration within the meta-base two layers. By incorporating
these elements, we can finally achieve favorable problem-dependent dynamic regret guaran-
tees under the one-gradient feedback model.

All of attained dynamic regret bounds are universal in the sense that they hold against
any feasible comparator sequence, making the algorithms adaptive to non-stationary envi-
ronments. An important future work is to investigate the optimality of the our attained
problem-dependent dynamic regret bounds. We now only have very preliminary understand-
ings for small-loss dynamic regret (see the lower bound in Theorem 8 and also discussions
in Remark 7) and some conjectures regarding the gradient-variation bound (see Remark 7),
but a complete understanding requires refined lower bounds that take problem-dependent
quantities into account. Moreover, it is important to investigate the possibility of exploit-
ing other function curvatures for the analysis of universal dynamic regret, such as strong
convexity, exp-concavity, and self-concordance.
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Appendix A. Proofs of Lemma 1 and Lemma 2

As discussed in Section 3.2, the versatility of optimistic mirror descent (OMD) makes it
very general to derive many existing results in a unified view. In this section, we provide two
specific implications of the general dynamic regret results presented in Theorem 1, which
essentially serves as the proofs of Lemma 1 (dynamic regret of OEGD) and Lemma 2 (static
regret of Optimistic Hedge).

First, by choosing the regularizer as ψ(x) = 1
2∥x∥2

2, we obtain the dynamic regret bound
for the OEGD algorithm as stated in Lemma 1.

Proof [of Lemma 1] We first show a general result for the OMD algorithm with arbitrary
Mt ∈ Rd and the regularizer ψ(x) = 1

2∥x∥2
2, and then prove Lemma 1 by choosing Mt =

∇ft−1(xt−1).
It is easy to verify that the regularizer ψ(x) = 1

2∥x∥2
2 is 1-strongly convex with respect

to the Euclidean norm ∥ · ∥2 and the induced Bregman divergence is Dψ(x,y) = 1
2∥x − y∥2

2.
As a consequence, Theorem 1 gives

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ η
T∑
t=1

∥∇ft(xt) −Mt∥2
2 + 1

2η

T∑
t=1

(
∥ut − x̂t∥2

2 − ∥ut − x̂t+1∥2
2

)

− 1
2η

T∑
t=1

(
∥x̂t+1 − xt∥2

2 + ∥x̂t − xt∥2
2

)
.

Notice that the second term can be upper bounded as follows.

T∑
t=1

(
∥ut − x̂t∥2

2 − ∥ut − x̂t+1∥2
2

)
≤ ∥u1 − x̂1∥2

2 +
T∑
t=2

(
∥ut − x̂t∥2

2 − ∥ut−1 − x̂t∥2
2

)

≤ ∥u1 − x̂1∥2
2 +

T∑
t=2

∥ut − ut−1∥2∥ut − x̂t + ut−1 − x̂t∥2

≤ D2 + 2D
T∑
t=2

∥ut − ut−1∥2,

where we use the triangle inequality and the boundedness of the feasible domain. We further
evaluate the last term:

T∑
t=1

(
∥x̂t+1 − xt∥2

2 + ∥x̂t − xt∥2
2

)
≥

T∑
t=2

(
∥x̂t − xt−1∥2

2 + ∥x̂t − xt∥2
2

)
≥ 1

2

T∑
t=2

∥xt − xt−1∥2
2,

(53)

in which the last inequality holds due to the fact a2 + b2 ≥ (a + b)2/2. Hence, combining
all the three inequalities, we get the following result for general OMD with ψ(x) = 1

2∥x∥2
2,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ η
T∑
t=1

∥∇ft(xt) −Mt∥2
2 + 1

η
(D2 + 2DPT ) − 1

4η

T∑
t=2

∥xt − xt−1∥2
2
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Furthermore, when choosing the optimism as the last-round gradient asMt = ∇ft−1(xt−1),
the adaptivity term η

∑T
t=1∥∇ft(xt) −Mt∥2

2 can be upper bounded in the following way:

η
T∑
t=1

∥∇ft(xt) −Mt∥2
2

= η∥∇f1(x1)∥2
2 + η

T∑
t=2

∥∇ft(xt) − ∇ft−1(xt−1)∥2
2

≤ ηG2 + 2η
T∑
t=2

∥∇ft(xt) − ∇ft−1(xt)∥2
2 + 2η

T∑
t=2

∥∇ft−1(xt) − ∇ft−1(xt−1)∥2
2

≤ ηG2 + 2η
T∑
t=2

sup
x∈X

∥∇ft(x) − ∇ft−1(x)∥2
2 + 2ηL2

T∑
t=2

∥xt − xt−1∥2
2,

where the last step exploits the L-smoothness of the online functions. Substituting the
result back yields
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ) +

(
2ηL2 − 1

4η

) T∑
t=2

∥xt − xt−1∥2
2

≤ η(G2 + 2VT ) + 1
2η (D2 + 2DPT ),

where the setting of step size η ≤ 1/(4L) ensures the last term in the first inequality be
non-positive. We hence complete the proof.

Next, by choosing the regularizer as ψ(p) = ∑N
i=1 pi ln pi, the loss function as ft(pt) =

⟨pt, ℓt⟩ and optimism Mt = mt, OMD recovers Optimistic Hedge (Rakhlin and Sridharan,
2013). Here, with a slight abuse of notations, we now use p ∈ ∆N to denote the variable.
Theorem 1 implies the static regret for Optimistic Hedge algorithm by choosing compara-
tors as a fixed one in the simplex.

Proof [of Lemma 2] When choosing the negative-entropy regularizer ψ(p) = ∑N
i=1 pi ln pi,

it is not hard to verify that ψ is 1-strongly convex with respect to ∥ · ∥1 and the induced
Bregman divergence is Dψ(p, q) = ∑N

i=1 pi ln(pi/qi). As a result, by choosing comparators
as ei Theorem 1 gives

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ ε
T∑
t=1

∥ℓt − mt∥2
∞ + 1

2ε

T∑
t=1

(
Dψ(ei, p̂t) − Dψ(ei, p̂t+1)

)

− 1
ε

T∑
t=1

(
Dψ(p̂t+1,pt) + Dψ(pt, p̂t)

)
.

Consider the second term on the right hand side. The telescoping structure of the second
term implies

1
2ε

T∑
t=1

(
Dψ(ei, p̂t) − Dψ(ei, p̂t+1)

)
≤ 1
ε

Dψ(ei, p̂1) = 1
ε

ln(1/p1,i).
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Moreover, by Pinsker’s inequality, we have Dψ(p, q) = KL(p, q) = ∑N
i=1 pi ln(pi/qi) ≥

1
2∥p − q∥2

1. Therefore, the last term can be lower bounded as

T∑
t=1

(
Dψ(p̂t+1,pt) + Dψ(pt, p̂t)

)
≥ 1

2

T∑
t=1

(
∥p̂t+1 − pt∥2

1 + ∥pt − p̂t∥2
1

)
≥ 1

4

T∑
t=2

∥pt − pt−1∥2
1,

where the last inequality is got by regrouping the sum and applying triangle inequality
like (53).

Combining all above these, we achieve

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ ε
T∑
t=1

∥ℓt − mt∥2
∞ + lnN

ε
− 1

4ε

T∑
t=2

∥pt − pt−1∥2
1, (54)

which ends the proof.

Note that the negative term in the regret bound (54) is very essential, which is quite
useful in a variety of problems requiring adaptive bounds. Our analysis is based on the
unified view of OMD (Theorem 1), and is simpler and easier to understand than the original
proof due to Syrgkanis et al. (2015), who interpret the update from the lens of FTRL
(Follow-the-Regularized-Leader) and prove the result based on mathematical induction.

Appendix B. Adaptive Learning Rate Version

In the main text, our proposed algorithms (Sword and Sword++) both employ a fixed
learning rate for the meta-algorithm, which greatly simplifies the presentation and re-
gret analysis. The learning rate configurations require the knowledge of gradient variation
VT = ∑T

t=2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2
2 (for Sword) or its variant V̄T = ∑T

t=2∥∇ft(xt) −
∇ft−1(xt−1)∥2

2 (for Sword++).
In this section, we present an adaptive version using the self-confident learning rate tun-

ing (Auer et al., 2002) such that the meta-algorithm does not require such information ahead
of time.3 Before presenting the details, we first extend the collaborative online ensemble
framework in Section 5 to an adaptive version. We then use it to prove the gradient-variation
and small-loss dynamic regret bounds for the adaptive version of Sword++.

B.1 Adaptive Collaborative Online Ensemble

In this part, we provide the adaptive learning rate version of the unified framework presented
in Section 5. Comparing with the fixed learning rate version, the only difference is that we
run the optimistic Hedge with a time-varying learning rate for the meta-algorithm,

pt+1,i ∝ exp
(

−εt
( t∑
s=1

ℓs,i +mt+1,i
))

, (55)

3. For simplicity, we only present the adaptive version for Sword++, and the one for Sword can be similarly
obtained (which is actually simpler). Moreover, an important note is that our adaptive version also only
requires one gradient per iteration, hence still feasible for the one-gradient feedback model.
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where the loss vector ℓt and mt share the same configurations as (26). For any i-th base-
algorithm, we use the same update rule as the fixed learning rate version

xt,i = ΠX [x̂t,i − ηiMt] , x̂t+1,i = ΠX [x̂t,i − ηi∇ft(xt)] , (56)

Then, we can generate the prediction for iteration t by xt = ∑N
i=1 pt,ixt,i and have the

following guarantee.

Theorem 9. Under the same assumptions and parameter configurations as Theorem 5 and
setting the learning rate of the meta-algorithm as

εt = min
{
ε̄,

√
lnN

D2∑t
s=1∥∇ft(xt) −Mt∥2

2

}
, (57)

Then, decisions specified by (55) and (56) satisfy that for any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ 5
√
D2 lnNAT + 2

√
(D2 + 2DPT )AT + lnN

ε̄
+ 2ε̄D2G̃2

+ 2(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i − 1

4ε̄Sp − λSmix. (58)

In above, G̃ = maxt∈[T ]∥∇ft(x) −Mt∥2, AT = ∑T
t=1∥∇ft(xt) −Mt∥2

2 is the adaptivity term
measuring the quality of optimistic gradient vectors {Mt}Tt=1, and PT = ∑T

t=2∥ut−1 − ut∥2
is the path length of comparators. The terms Sx,i = ∑T

t=2∥xt,i − xt−1,i∥2
2, Sp = ∑T

t=2∥pt −
pt−1∥2

1 and Smix = ∑T
t=2

∑N
i=1 pt,i∥xt,i − xt−1,i∥2

2 measures the stability of the decisions
returned by the base-algorithm, meta-algorithm, and overall algorithm, respectively.

We remark that, in the fixed learning rate case, one can show that the Optimistic
Hedge (22) is identical to the optimistic OMD with the negative-entropy regularizer. How-
ever, the adaptive learning rate version (55) can only be interpreted as a follow the regular-
ized leader (FTRL) algorithm. Thus, it is hard to directly apply Theorem 1 to obtain the
meta-regret. We choose a FTRL-type meta-algorithm instead of an OMD-type algorithm,
in that OMD with time-varying learning rates would suffer linear regret in the worst case
when using the negative-entropy regularizer. Although one can fix this issue with the sta-
bilization technique (Fang et al., 2020), we just use the FTRL-type update for simplicity.
We present the proof of Theorem 9 as follows.

Proof [of Theorem 9] The proof is almost identical to that of Theorem 5. The main
difference is that we use a counterpart of Lemma 2 to bound the meta-regret for the adaptive
learning rate version (55). Specifically, since (55) is identical to the Optimistic FTRL
algorithm pt+1 = arg minp∈∆⟨p,

∑t
s=1 ℓs +mt+1⟩ +ψt+1(p) with the regularizer ψt+1(p) =

1
εt

(∑N
i=1 pi ln pi + lnN),4 a direct application of Orabona (2019, Theorem 7.35) shows that

4. Here, we add an additional constant ln N in the regularizer, which will not effect the solution of the
optimization problem and meanwhile make the regret analysis more convenient.
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Lemma 3 (Theorem 7.35 of Orabona (2019)). The regret of Optimistic Hedge with a time-
varying learning rate εt > 0 (see the update specified in (55)) to any expert i ∈ [N ] satisfies

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ max
p∈∆

ψT+1(p) +
T∑
t=1

⟨ℓt − mt,pt − pt+1⟩ −
T∑
t=1

1
2εt−1

∥pt − pt+1∥2
1.

Then, based on this Lemma 3, we can bound the regret of the Optimistic Hedge by
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i

≤ max
p∈∆

ψT+1(p) +
T∑
t=1

⟨ℓt − mt,pt − pt+1⟩ −
T∑
t=1

1
2εt−1

∥pt − pt+1∥2
1

≤ lnN
εT

+
T∑
t=1

εt−1∥ℓt − mt∥2
∞ +

T∑
t=1

1
4εt−1

∥pt − pt+1∥2
1 −

T∑
t=1

1
2εt−1

∥pt − pt+1∥2
1

≤ lnN
εT

+D2
T∑
t=1

εt−1∥∇ft(xt) −Mt∥2
2 −

T∑
t=2

1
4εt−1

∥pt − pt−1∥2
1

≤ 2ε̄D2G2 + lnN
ε̄

+ 5

√√√√D2 lnN
T∑
t=1

∥∇ft(xt) −Mt∥2
2 −

T∑
t=2

1
4εt−1

∥pt − pt−1∥2
1,

where the second inequality is due to the Hölder’s inequality ⟨ℓt − mt,pt − pt+1⟩ ≤
∥ℓt − mt∥∞∥pt − pt+1∥1 and the fact that ab ≤ εt−1a

2 + b2

4εt−1
holds for any a, b, εt−1 > 0.

The third inequality is by definitions of ℓt and mt. The last inequality is a consequence of
the inequality lnN/εT ≤ lnN/ε̄ +

√
D2 lnN∑T

t=1∥∇ft(x) −Mt∥2
2 by learning rate config-

uration (60) and Lemma 11, which provides a clipped version of the self-confident tuning.
Then, by the same argument to obtain the meta-regret in the proof of Theorem 5,

see (48), we have

meta-regret ≤ 5
√
D2(lnN)AT + lnN

ε̄
+ 2ε̄D2G2 − 1

4ε̄

T∑
t=2

∥pt − pt−1∥2
1

− λ
T∑
t=1

N∑
i=1

pt,i∥xt,i − xt−1,i∥2
2 + λ

T∑
t=1

∥xt,i − xt−1,i∥2
2, (59)

which holds from any base-algorithm i ∈ [N ]. Subsequently, following the same arguments
in the proof of Theorem 5, we can identify an optimal base-algorithm indexed by i∗ ∈ [N ],
whose base-regret is bounded by

base-regret ≤ 2
√

(D2 + 2DPT )AT + 2(D2 + 2DPT )
η̄

.

Finally, combining the meta-regret and the base-regret of the i∗-th base-learner we have
T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ 5
√
D2 lnNAT + 2

√
(D2 + 2DPT )AT + lnN

ε̄
+ 2ε̄D2G2

+ 2(D2 + 2DPT )
η̄

+
(
λ− 1

4η̄

)
Sx,i − 1

4ε̄Sp − λSmix,
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where Sx,i = ∑T
t=2∥xt,i − xt−1,i∥2

2, Sp = ∑T
t=2∥pt −pt−1∥2

1 and Smix = ∑T
t=2

∑N
i=1 pt,i∥xt,i −

xt−1,i∥2
2 measures the stability of the decisions.

B.2 Adaptive Version of Sword++

We show that the adaptive learning rate version of the framework (55) and (56) with
Mt = ∇ft−1(xt−1) for t ≥ 2 (M1 = 0) achieves the same problem-dependent dynamic
regret bound as that in Theorem 6.

Theorem 10. Under the same assumptions and parameter configurations as Theorem 6
and set the learning rate of the meta-algorithm as

εt = min
{
ε̄,

√
lnN

D2∑t
s=1∥∇fs(xs) −Ms∥2

2

}
(60)

with Mt = ∇ft−1(xt−1) for t ≥ 2 (M1 = 0). Then, decisions specified by (55) and (56)
satisfy that for any comparators u1, . . . ,uT ∈ X ,

T∑
t=1

ft(xt) −
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + min{VT , FT })(1 + PT )
)
. (61)

Proof Under the parameter configurations λ = 2L, η̄ = 1/(8L) and ε̄ = 1/(8D2L), the
dynamic regret bound of the unified algorithm with the adaptive learning rate (c.f. Theo-
rem 9) is almost the same as that of the fixed learning rate (c.f. Theorem 5) with difference
up to constant factors. Thus, the same arguments in the proof of Theorem 4 and Theorem 6
lead to the best-of-both-worlds bound.

Appendix C. Technical Lemmas

This section collects several useful technical lemmas frequently used in the proofs. The
first one is the Bregman proximal inequality, which is crucial in the analysis of first-order
optimization methods based on Bregman divergence.

Lemma 4 (Bregman proximal inequality (Chen and Teboulle, 1993, Lemma 3.2)). Let X
be a convex set in a Banach space. Let f : X 7→ R be a closed proper convex function on
X . Given a convex regularizer ψ : X 7→ R, we denote its induced Bregman divergence by
Dψ(·, ·). Then, any update of the form

xk = arg min
x∈X

{f(x) + Dψ(x,xk−1)}

satisfies the following inequality

f(xk) − f(u) ≤ Dψ(u,xk−1) − Dψ(u,xk) − Dψ(xk,xk−1) (62)

for any u ∈ X .
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The second one is the stability lemma, which is very useful in analyzing online algorithms
based on FTRL or OMD frameworks.

Lemma 5 (stability lemma (Chiang et al., 2012, Proposition 7)). Consider the following two
updates: (i) x∗ = arg minx∈X ⟨a,x⟩+Dψ(x, c), and (ii) x′

∗ = arg minx∈X ⟨a′,x⟩+Dψ(x, c).
When the regularizer ψ : X 7→ R is a 1-strongly convex function with respect to the norm
∥ · ∥, we have ∥x∗ − x′

∗∥ ≤ ∥(∇ψ(c) − a) − (∇ψ(c) − a′)∥∗ = ∥a − a′∥∗.

The self-bounding property of smooth functions is crucial and frequently used in proving
small-loss bounds for convex and smooth functions.

Lemma 6 (self-bounding property (Srebro et al., 2010, Lemma 3.1)). For an L-smooth
and non-negative function f : X 7→ R+, we have ∥∇f(x)∥2 ≤

√
4Lf(x), ∀x ∈ X .

Notably, from the analysis of original paper (Srebro et al., 2010, Lemma 2.1 and Lemma
3.1), we can find that actually both the non-negativity and smoothness are required outside
the domain X , and this is why we require the function ft(·) to be non-negative and smooth
outside the domain X .

Finally, we present several useful inequalities.

Lemma 7. Let a, b > 0 and x0 > 0 be three positive values. Suppose that L ≤ ax+ b
x holds

for any x ∈ (0, x0]. Then, by taking x∗ = min{
√
b/a, x0}, we ensure that

L ≤ 2
√
ab+ 2b

x0
.

Proof Suppose
√
b/a ≤ x0, then x∗ =

√
b/a and we have L ≤ ax∗+ b

x∗ = 2
√
ab. Otherwise,

x∗ = x0 and we have L ≤ ax∗ + b
x∗ = ax0 + b

x0
. Notice that in latter case x0 ≤

√
b/a holds,

which implies ax0 ≤ b
x0

and hence ax0 + b
x0

≤ 2b
x0

. Combining two cases finishes the proof.

Lemma 8 (Lemma 19 of Shalev-Shwartz (2007)). For any x, y, a ∈ R+ that satisfy x−y ≤√
ax,

x− y ≤ a+ √
ay. (63)

Lemma 9. For any x, y, a, b ∈ R+ that satisfy x− y ≤
√
ax+ b,

x− y ≤ a+ b+
√
ay + ab. (64)

Lemma 10 (Lemma 3.5 of Auer et al. (2002)). Let a1, a2, . . . , aT be non-negative real
numbers. Then

T∑
t=1

at√
δ +∑t

s=1 as
≤ 2

√√√√δ +
T∑
t=1

at,

where 0/
√

0 = 0.
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Lemma 11. Let a1, a2, . . . , aT , b and c̄ be non-negative real numbers and at ∈ [0, B] for any
t ∈ [T ]. Let the step size be

ct = min
{
c̄,

√
b∑t

s=1 as

}
and c0 = c̄.

Then, we have
T∑
t=1

ct−1at ≤ 2c̄B + 4

√√√√b T∑
t=1

at. (65)

Proof This proof shares the same spirit with that of Pogodin and Lattimore (2019, Lemma
4.8). We assume ∑T

t=1 at ≤ B, otherwise we can directly have ∑T
t=1 ct−1at ≤ c̄B. When∑T

t=1 at > B, let t′ = min{t ∈ [T ] : ∑t−1
s=1 as ≥ B}. We can decompose the target by

T∑
t=1

ct−1at =
t′−1∑
t=1

ct−1at +
T∑
t=t′

ct−1at.

For the first term we have ∑t′−1
t=1 ct−1at = ∑t′−2

t=1 ct−1at+ct′−2at′−1 ≤ 2c̄B. As for the second
term, we have

T∑
t=t′

ct−1at ≤
T∑
t=t′

at
√
b√∑t−1

s=1 as
≤

T∑
t=t′

at
√
b√

1
2
∑t
s=1 as

≤
T∑
t=1

at
√
b√

1
2
∑t
s=1 as

≤ 4

√√√√b T∑
t=1

at

where the second inequality is due to ∑t
s=1 as ≤ B + ∑t−1

s=1 as ≤ 2∑t−1
s=1 as and the last

inequality comes from Lemma 10. We complete the proof by combining the two terms.
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